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Abstract 
The application of energy storage is crucial for the efficient use of  renewable energy. In order 

to adopt and operate energy storage systems in the energy grid, accurate short-term 

forecasting of the energy load is essential. In this study, two years of (fifteen-minute interval) 

electricity consumption data of seventy dwellings inside a residential district is analysed. To 

determine the best suitable electricity demand prediction model for the given data, a 

literature study together with an empirical test of multiple machine learning models is 

conducted. Prior to the prediction algorithm, a clustering model is ran to group households 

with similar demand profiles in a two week period preceding the prediction. A random forest 

regressor is used to predict hourly electricity demand for each cluster, one day ahead. Over 

ten validation days, the proposed model achieves, on average, a R2 score of 0.77 and a 

cumulative variation of root mean squared error (cv-RMSE) of 0.41. The k-means clustering, 

together with a random forest, is able to predict the trends of hourly electricity loads one day 

ahead, and determine the indirect sharing potential. The most important prediction feature is 

the electricity consumption of the previous day. Other important features are humidity, 

outside temperature and electricity consumption of two and three days previous. Based on 

the validations, it is estimated that the neighbourhood can be completely self-sufficient for 

seven out of twelve months with a storage system of 660kWh, which is 9.43kWh per dwelling. 

When applying long-term energy storage, the self-sufficiency could be increased even more. 

This study covers the prediction of short-term energy demand of a small residential district 

with on-site renewables, and uses clustering in the pre-processing of the data, which is a new 

approach in this field of research. Currently this study used only individual days for validation. 

Validating over longer periods of time, at least multiple days, could increase the understanding 

of the actual sharing potential between dwellings. Also, by experimenting with additional user 

specific prediction features such as; occupancy, appliances ownerships, and solar radiation, 

improved model fitting might be achieved. 

Key words: Energy demand prediction, Machine learning, Random Forest, k-means clustering, 

Electrical Storage System, Energy Sharing. 
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Summary 
Ever since the world-wide agreement to pursue efforts to limit the temperature increase to 

1.5 ̊C above pre-industrial levels, governments have started stimulating energy efficiency and 

sustainability measures by means of grants and regulations. One of the most important focus 

fields of these regulations are buildings, since they account for 40% of the global energy 

demand and 30% of global CO2 emissions. This has led to a growth in use of private renewable 

energy generation, primarily with photovoltaic (PV) panels, and has changed the energy 

system towards a more decentralized system. Due to the variability of renewable energy 

sources, energy storage systems must be implemented to make a complete energy transaction 

possible. 

Accurate short-term electricity load forecasting is required in order to operate storage systems 

in the energy grid efficiently. Research in the field of energy demand prediction does not focus 

enough attention on local short term energy prediction with on-site renewables, and no 

straightforward energy storage operation systems are at hand. This study has proposed an 

approach to short-term forecasting of the electricity demand of a residential district, and   

efficiently operate an electrical storage system using on-site renewable energy. 

Two years of, fifteen-minute interval, electricity usage data from 70 renovated dwellings was 

used to test the suggested approach. The dwellings are located in the centre of the 

Netherlands, have no natural gas connection, and are provided with a PV-system, heat pump, 

and high performing insulation. The building characteristics of the dwellings suggest the 

buildings can become mostly self-sufficient when a wisely chosen and smartly operated 

storage system is used. 

The choice for the most suitable machine learning model was established by conducting a 

literature review, and empirically testing several machine learning methods. This led to the 

conclusion that random forest regressors are suitable for hourly one day ahead electricity 

demand prediction for the residential district.. The prediction model uses 38 features, 

historical electricity load, open source meteorological data and time variables such as day 

type, month, and season. Hyperparameters of the prediction model are optimized by means 

of a grid search algorithm which selects the best combination of hyperparameter settings. 

Preceding on running the prediction, electricity demand profiles of dwellings are clustered by 

means of a k-means clustering algorithm, which minimizes the within cluster variation of the 

electricity demand 

To effectively use a storage system in the residential district, an operation system was 

proposed. For the operation system to be applicable some functional requirements are drawn 

up; the houses must be individually bidirectionally connected to the grid and the storage 

system, the operation system must have access to the real time smart metering data of the 

dwellings as well as to hourly weather forecast one day ahead. Furthermore, the operation 

system must be able to control all the switches in the electrical circuit of the neighbourhood. 

The operation system consists of seven conditional rules to optimize the local usage of 

renewable energy and thereby self-sufficiency. 
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The proposed model achieved, on average, over ten validation days, an R2 score of 0.77 and a 

cv-RMSE of 0.41. The k-means clustering, together with a random forest regressor algorithm 

is able to predict the trends of hourly one day ahead electricity loads and determine the 

indirect sharing potential. The most influential prediction feature is the electricity 

consumption of the previous day. Other important features are humidity, outside temperature 

and electricity consumption of two and three days prior. The prediction model predicts better 

in spring and summer than autumn and winter. Based on the validations, the neighbourhood 

can entirely be self-sufficient for seven out of twelve months with a storage system of 660kWh, 

which is 9.43kWh per dwelling. When applying long-term energy storage, thermal or 

electrochemical, the self-sufficiency could be increased even more. 

The model is only validated over single days, which is a shortcoming of this research. Validating 

over more extended periods, at least multiple days, should give a better understanding of the 

actual sharing potential between dwellings. Furthermore, by experimenting with additional 

prediction features such as; occupancy, appliances ownerships (including electric vehicle), and 

solar radiation, improved model fitting might be achieved. Incorporating dynamic pricing and 

long term storage in the operation system could also enhance the current approach since it 

can help to determine the financial feasibility. 
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Samenvatting 
Sinds het wereldwijde akkoord op het limiteren van de opwarming van de aarde op +1,5 ˚C 

ten opzichte van het pre-industrieel tijdperk, zijn overheden gestart met het stimuleren van 

duurzame maatregelen door middel van subsidies en wetgeving. Een van de belangrijkste 

focus gebieden voor deze maatregelen is de gebouwde omgeving. Gebouwen in het algemeen 

zijn verantwoordelijk voor 40% van de wereld wijde energy behoefte en 30% van de CO2 

uitstoot. Dit heeft ertoe geleid dat de toepassing van particulieren hernieuwbare 

energieopwekking enorm is toegenomen de afgelopen jaren, vooral door middel van 

zonnepanelen. Dit heeft het energiesysteem veranderd van een centraal naar een 

gedecentraliseerd systeem. Doordat de hernieuwbare energie variabel aanwezig is, is het 

implementeren van energieopslag benodigd om een volledige energietransitie mogelijk te 

maken.  

Om een energieopslagsysteem slim aan te sturen in het elektriciteitsnet, is nauwkeurige 

voorspelling van korte termijn elektriciteit behoefte benodigd.   Onderzoeken op het gebied 

van het voorspellen van de behoefte van energie, hebben nauwelijks gefocust op lokale korte 

termijn energie behoefte waarbij ook hernieuwbare energie bronnen op locatie aanwezig zijn. 

Ook is er geen zijn er geen standaard aansturingssystemen voor opslagsystemen om 

overtollige hernieuwbare energie te delen.  Het doel van dit onderzoek is het bieden van een 

methode om voor een woonwijk de lokale korte termijn elektriciteitsbehoefte te voorspellen. 

Verder wordt er een opzet voor een aansturingssysteem voor elektrisch energy opslag 

systeem voorgesteld om efficiënt gebruik te maken van lokale hernieuwbare energie om het  

zelfvoorzienend vermogen te vergroten.  

Voor 70 gerenoveerde woningen is voor twee jaar aan elektriciteitsverbruik gegevens van 

slimme meter data beschikbaar gesteld, met metingsintervallen van vijftien minuten. De 

woningen, gelegen in het midden van Nederland, hebben geen gas aansluiting, en zijn 

voorzien van zonnepanelen, warmtepomp en hoogwaardige isolatie. De gebouw 

karakteristieken van de woningen suggereren de mogelijkheid om, met behulp van een 

elektrisch opslag systeem, grotendeels zelfvoorzienend te worden.  

De keuze om een zo geschikt mogelijk machine learning model te selecteren, is gebaseerd op 

een literatuur studie en empirische testen van verschillende machine learning modellen. 

Hieruit is geconcludeerd dat een random forest regressor geschikt is voor het voorspellen van 

korte termijn elektriciteitsverbruik van een woonwijk. Voorafgaand aan de predictie, zijn de 

elektriciteitsverbruik profielen van de woningen geclusterd door middel van k-means cluster 

algoritme, welke de varianties binnen de clusters minimaliseert. Het voorspellend model 

gebruikt 38 variabelen, waaronder, historisch elektriciteitsverbruik, vrij beschikbare 

meteorologische gegevens en tijd gerelateerde gegevens, zoals indicators voor dag van de 

week, maand en seizoen. Hyperparameters van het voorspellend model zijn geoptimaliseerd 

door middel van een algoritme wat de beste combinatie van parameter instellingen zoekt door 

een groot aantal parameter instellingen te testen. 
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Om effectief gebruik te maken van een elektrisch opslagsysteem in een woonwijk, is er een 

aansturingssysteem voorgesteld. Om dit voorstel bruikbaar te maken zijn er een aantal 

vereiste aan de omgeving waar deze in komt te staan; de woningen dienen direct bi 

directioneel verbonden te zijn met het opslagsysteem en het elektriciteitsnet, het 

aansturingssysteem dient toegang te hebben tot de slimme meter standen en tot de uurlijkse 

weersvoorspelling voor de komende 24 uur. Tenslotte dient het systeem de schakelingen in 

het elektrische circuit te kunnen bedienen. Het besturingssysteem is gebaseerd op zeven 

conditionele regels om de gegenereerde hernieuwbare energy lokaal te gebruiken en 

daarmee het zelfvoorzienend vermogen te bevorderen.  

Het gebruikte model behaald, gemiddeld over tien validatie dagen, een R2 score 0,77 en een 

cv-RMSE van 0.41. De k-means clustering samen met de random forest regressor zijn in staat 

om de uurlijkse trend van de komende 24 uur te voorspellen en het indirecte 

uitwisselingspotentieel te bepalen. De belangrijkste variabele voor het voorspellend model is 

het energieverbruik van de vorige dag op hetzelfde tijdstip. Andere belangrijke variabele zijn 

de luchtvochtigheid, temperatuur en elektriciteitsverbruik van twee en drie dagen 

voorafgaand aan de voorspelling. Op basis van de validatie is ingeschat dat, de woonwijk zeven 

van de twaalf maanden per jaar volledig zelfvoorzienend kan zijn bij gebruik van een elektrisch 

opslagsysteem van 660kWh, 9,42kWh per huishouden. Wanneer er ook gebruik wordt 

gemaakt van lange termijn opslag, kan het zelfvoorzienend vermogen zelfs nog vergroot 

worden.  

Het model is slechts gevalideerd op enkele dagen, wat een tekortkoming is van dit onderzoek. 

Wanneer er over langere periode gevalideerd wordt, minimaal meerdere dagen 

aaneengesloten, geeft dit een beter beeld van het daadwerkelijke uitwisselingspotentieel 

tussen de woningen. Ook kan de nauwkeurigheid van het model waarschijnlijk worden 

verbeterd door te experimenteren met extra variabelen zoals, aanwezigheid van bewoners, 

apparaten eigendom en zon intensiteit. Verder zou de huidige aanpak van het 

aansturingssysteem geoptimaliseerd kunnen worden naar de belangen van de eigenaar. 

Bijvoorbeeld door het in ogenschouw nemen van dynamische elektriciteitsprijzen en lange 

termijn opslag. 
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1. Introduction 
 

The energy transition currently is and will be for the next years, an important research topic. 

The application of sustainable developments and improvements in energy self-sufficiency will 

continue to play an important role, not only in academics but also in business and politics. This 

research will contribute to the field of energy demand prediction of residential buildings by 

suggesting a new approach which combines a clustering technique and an ensembled 

regression tree machine learning (ML) model. Also this research will discuss applying energy 

sharing to increase energy self-sufficiency of a neighbourhood.  
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1.1 Research context 
Similar to most of the countries around the world, the Netherlands has agreed upon pursuing 

efforts to limit the temperature increase to 1.5 ˚C above pre-industrial levels (United-Nations, 

2015). To achieve the goals from this agreement, energy, in general, must be used more 

efficiently, and more energy must be generated from sustainable or renewable sources. 

Buildings account for 40% of the global energy demand and 30% of global CO2 emissions, and 

is therefore, one of the most focused fields for stimulating energy efficiency and sustainability 

(Costa, Keane, Torrens, & Corry, 2013) (Wang, Wang, Zeng, Srinivasan, & Ahrentzen, 2018). 

This has led to regulations and subsidies which stimulate investments in energy efficiency and 

sustainability measures, such as applying better insulation and PV-systems, for private and 

commercial buildings (Wiebes, Stimulering Duurzame Energieproductie, 2019). These 

regulations and subsidies did have results, as the number of wind turbines and photovoltaic 

panel (PV) systems have grown steadily the previous years. High penetration of energy 

conversion technologies based, on fluctuating renewable energy sources, shifts the power 

system from centralized to decentralized energy systems. Energy is no longer generated 

centrally only using large power generation stations, and top-down distributed from the high-

voltage (HV) to the low-voltage (LV) grid where individuals can tap their desired demand 

(Junker, et al., 2018). In the decentralized systems, energy is generated, used, and distributed 

from numerous places across the grid. Currently, only a small portion of the total consumed 

energy is generated from sustainable or renewable sources. However, this is expected 

increase in the near future, rapidly. The report of CBS (2018) mentioned that the total share 

of renewable energy in the Netherlands was just 6.6% in 2017, but, the target for 2023 is to 

achieve 16% (CBS, 2018). This target demands a substantial growth of renewable energy 

generation, among which will be residential PV-installations. The trend report for PV 

applications of the International Energy Agency (IEA) state that the Netherlands has a total PV 

capacity of 2,983MW of which 853 MW is installed in the year 2017. Currently, three-quarter 

of the PV capacity is installed at private dwellings. To reach the renewable energy goals of 

2023 there is room for 1GW of PV capacity installations per year (Masson & Kaizuka, 2018). 

This is also acknowledged by the Smart Grids European Technology platform, as they state 

that a significant fraction of the generation capacity in 2035 will be stochastic and/or 

intermittent (SmartGrids, 2012).  
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1.2 Problem definition 
Most of the renewable energy sources, especially wind and solar energy, do not have a high 

energy density and are irregularly available. The utilisation of energy by the industry, 

dwellings, and the work place, have different demand patterns compared to the renewable 

energy generation patterns (Li & Chan, 2017). This is also true for PV-systems on residential 

buildings where the solar intensity is at its peak during the day where electricity demand, in 

general, is low. To use produced renewable energy effectively and to follow the demand, 

energy storage and smart energy dispatch technologies are necessary (Li & Chan, 2017). 

Although this is a clear statement, little applications of energy storage systems are currently 

used for residential buildings. Usage of electrical storage systems (ESS) are not yet established 

in the current energy system. More research should be conducted to expose the usability and 

feasibility of ESS. To properly use a storage system, the short-term detailed local energy 

demand of residential districts is necessary. There are many studies which suggest approaches 

to forecasting energy demand, but little of these are specific for short-term local residential 

buildings (Seyedzadeh, Rahimian, Glesk, & Roper, 2018) and almost none consider renewable 

energy generation on-site. As the adoption of renewable energy keeps increasing, also on the 

local residential district level, the need for energy storage and efficient energy distribution is 

increasing. 

The two main problems addressed in this research are: (i) the lack of research towards local 

short-term residential energy demand forecast with renewables on-site, which is needed for 

having a proper electricity distribution system, and (ii) the absence of a general concept to 

improve the effective usage of PV- generated electricity and the energy self-sufficiency in a 

residential district by utilizing an ESS.   
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1.3 Research objective 
This research aims to suggest an approach to accurately predict local residential electricity 

demand, with short time intervals, based on actual smart meter data. Currently, most 

researches, regarding energy demand prediction, have focused on enormous energy-

consuming entities, such as entire cities and campuses. Also, the prediction horizon of these 

studies are often very long, such as aggregated usage of daily, monthly or even yearly 

(Seyedzadeh, Rahimian, Glesk, & Roper, 2018). Having access to detailed energy demand 

profiles have not been widely available before the upcoming of smart meters. The smart 

meter data has enabled a closer look into the energy demand patterns of individuals, and 

might reveal possibilities in improving energy self-sufficiency. Smart meter data is often 

considered as privacy-sensitive. Therefore, not many studies have been able to use such 

detailed energy consumption data of a large sample of households. The suggested approach 

should contain a method or combination of methods, which is innovative and helps to improve 

currently used models. Further, the potential of increasing self-sufficiency by using an ESS and 

by sharing electricity between dwellings should be determined. The goal is to accurately 

formulate a methodology to achieve growing self-sufficiency for a group of houses.  

The research should show one of the many possible applications that analysing smart meter 

data makes possible. The research objectives will add knowledge to the research field of 

energy demand prediction since a rarely available dataset of smart meter data will be analysed 

in a way current researches have not done yet. The study should bring energy demand 

prediction a step closer to detailed individual household prediction, which can help efficiently 

micro-manage the smart grid and expose energy saving possibilities. 

 

1.4 Research questions 
To achieve the desired research objective, the following main research question should be 

answered: 

 

 

 

In order to answer this main research question, 3 sub-questions are drawn up: 

SQ1. How can the houses with similar electricity demand profiles be clustered?  

SQ2.  What machine learning algorithm performs best in predicting the hourly electricity 

demand one day ahead, for clusters of dwellings? 

SQ3. What is the expected direct and indirect electricity sharing potential between the 

clusters? 

 

  

How can self-sufficiency of a neighbourhood be increased by 
using electricity exchange and an electrical storage system, 

based on analysed smart meter data? 
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1.5 Research design 
This research is divided into three stages, see Figure 1: (i) explorative research, (ii) validation 

and (iii) reporting. The following three sections will describe the content of each research 

stage.  

Explorative Research Data pre-processing

Literature study

Validation 

Reporting
Conclusions, discussion 
and recommendations

Research stage Activities

Sub question 1

Sub question 2

Sub question 3

Empirical study 

Research questions

Proof of Concept

Start

R
es

ea
rc

h
 p

er
io

d

End

 

Figure 1 Research design 

1.5.1 Explorative research 

The explorative research stage consists of three parts; (i) literature study, (ii) data preparation 

and (iii) empirical study. In the literature study related scientific papers will be studied to see 

what methods and approaches are currently used in the field of research. The goal of this 

literature study is to explore the current state of the art techniques for energy demand 

forecasting. The data preparation part is a necessary step to make the received data useful for 

analysis and modelling. In this step the raw datasets will be transformed and processed so 

that they can be used for machine learning purposes. Activities such as removing outliers and 

replacing missing values will be performed. During the empirical study part, various machine 

learning algorithms will be tested to find empirical evidence for which algorithm performs best 

on the received data. After the explorative research section a well-grounded choice can be 

made to select a suiting model for predicting residential electricity demand.  
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1.5.2 Validation 

In the validation section, the third research question will be answered. The direct and indirect 

sharing potential between houses will be determined by  means of predicting the electricity 

demand for clusters. The suggested approach aims to predict the electricity demand for one 

day ahead and identify the direct and indirect sharing potential between the clusters. The 

validation part will compare the outcome of the prediction model with the actual values and 

discuss the results. 

1.5.3 Reporting 

During the reporting stage of the research the report will be finalized. This will contain 

answering individual research questions, drawing up conclusions, discussing the overall study, 

and giving recommendations for future related research.  

 

1.6 Reading guide 
In chapter two, a literature review of some close related scientific articles is given. Primarily  

energy demand prediction related articles will be covered throughout the literature review. 

Chapter three contains a thorough description of the used methodology. It includes 

explanation of the clustering technique and the prediction model as well as the method to 

determine the sharing potential. In chapter four, a description of the data and pre-processing 

methods are described. Chapter five presents the results of one validation day, and the overall 

results of the used approach. The conclusions, a critical discussion of the used methodology, 

and recommendations for future research are written down in chapter six.  
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2. Literature review  
 

This literature review summarizes scientific publications related to energy demand prediction 

to see what methods could be implemented, what kind of data and performance indices are 

used, and what topics need further research. By reviewing these studies, it becomes clear 

what is already done in this field of research, and where additional work is desired. This 

literature review points out the necessity and relevance of this research. The covered studies 

are the inspiration for the used approach in this research.  
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2.1 Energy system transformation 
The decentralized energy system demands smart solutions to be implemented, which enables 
achieving more energy efficiency and energy flexibility. Energy flexibility is the ability to adapt 
the energy profiles without threatening technical and comfort constraints (Reynders, et al., 
2018).  Therefore, to achieve a more efficient and flexible energy system, the widely known 
trais energetica method was adapted to five steps, including user demand and behaviour and 
the effect of energy exchange and storage systems (HaskoningDHV, 2018), see Figure 2. The 
newly added step 1, which is “Design according to user demand and behaviour”, helps in 
exploring the required energy flexibility without compromising the user comfort. On the other 
hand, step 4, “energy exchange and storage systems”, helps in overcoming the grid-related 
bottlenecks. Even though the method is fully established, further research and exploration are 
still needed to identify the potential of this methodology in different case studies. Therefore, 
this research will contribute to the knowledge and applications of step-four by identifying the 
potential for energy sharing and storing.  
  

 
Figure 2 Five step method (HaskoningDHV, 2018) 

As step four includes storage systems, a short declaration on the necessity of storage systems 

in the electricity grid will be given. There is a broad acknowledgment that, due to the 

variability of renewable energy sources, energy storage systems must be implemented to 

make a complete energy transaction possible. Electrical storage systems can contribute to a 

variety of manners for efficient energy usage. The electrical storage system enables 

maximization of PV systems and shared usage of electricity generated by PV systems. When 

the electricity is not used by a household with a PV system the electricity can be stored in the 

ESS, during daytime when demand is low, and consumed, by the household itself or another 

household in the neighbourhood, when demand is high. The decentralisation of the energy 

network and the usage of ESS enables consumers to shape their power demand actively. This 

possibly will increase the energy demand flexibility of a smart neighbourhood.  
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Other examples of benefits, dependent on the capacity of the storage system and the time 

the electricity is stored, described by Barton and Infield (2004) are: 

• Spinning reserve – clouds on PV panels and wind power smoothing 

• Standing reserve – peak shaving smoothing of loads  

• Smoothing of weather effects – PV,  wind, small hydro 

• Voltage and frequency control 

The research of Barton and Infield (2004) show that the electrical storage systems can increase 

the absorption of renewable energy by 10 -25%, dependent on the storage time, without grid 

reinforcement. Some scenarios used in the research are proven to be economically 

worthwhile (Barton & Infield, 2004). One possible storage system is the lithium-ion battery. 

Some studies have determined the financial feasibility of such electrical storage systems with 

different subsidy scenarios (Kantor, Rowlands, Parker, & Lazowski, 2015) (Cucchiella, 

D’Adamo, & Gastaldi, 2017). The approach of these studies suggests that with the current 

practices, ESSs are, currently not feasible without governmental support in these specific 

cases. However, as mentioned earlier, the electricity grid, as well as the regulations regarding 

feed-in electricity, are changing rapidly, which makes storage becoming more a feasible 

additive to the network. 

In order to operate an ESS efficiently, accurate short-term electricity load forecast is desired 

(Lahouar & Slama, 2015). Energy load forecasting or energy demand prediction is the 

speculation and prediction of what the power demand for a certain period in the future will 

be, using historical data, and its influencing factors and by applying mathematical algorithms 

(Huo, Shi, & Chang, 2016). Energy demand prediction has always been acknowledged to be a 

difficult task. The dependency on weather conditions, building characteristics, operation of 

sub-level components (e.g. HVAC-system and appliances), occupancy and user behaviour, 

makes it a complex problem (Zhao & Magoulès, 2012). However, the high penetration levels 

of intermittent resources in the grid, such as wind and solar energy, increases the degree of 

uncertainty even more, due to their non-regular behaviour. This is an incentive to extend the 

knowledge in this field of research (Lahouar & Slama, 2015) (Huo, Shi, & Chang, 2016). The 

technological advancement of communication infrastructures, mathematical modelling 

techniques, and numerical simulation environments are promising developments for the 

integration of short-term electricity load forecasting into the existing grids. This is also true for 

storage capacity within the energy network, which can be achieved by intelligent demand side 

management (DSM) (Jurado, Peralta, Nebot, Mugica, & Cortez, 2013). Research has proven 

that empirical ML modelling can provide noticeable prediction results and outperform 

engineering-based building energy modelling when the algorithm and settings are 

appropriately chosen (Wang, Wang, Zeng, Srinivasan, & Ahrentzen, 2018). ML is generally 

referred to as a computer algorithm that learns from existing data (Seyedzadeh, Rahimian, 

Glesk, & Roper, 2018). The focus of this study is therefore towards the application of ML 

models to forecast short-term electricity demand. 
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2.2 Energy demand prediction 

2.2.1 Essence of energy demand forecasting 

There are many arguments on why improving the accuracy of energy demand modelling is 

beneficial. Better prediction of energy demand can lead to a reduction of monitoring 

expenses, initial cost of hardware components, and long-term maintenance costs in the future 

grids (Kuo & Huang, 2018). Accurate forecasting  of energy consumption can help to determine 

the required storage size, to delay and postpone energy consumption. It can be used at early 

design stages of renewable energy systems  to see its impact. It can also help in the DSM, to 

forecast the likely future development of electricity demand (Rodrigues, Cardeira, & Calado, 

2014). Wang et al. (2018) state that building energy demand prediction is becoming more 

significant for improving efficiency due to its essential role for implementing energy efficiency 

measures such as; demand response control, system fault detection and diagnosis, building 

energy benchmarking and building system measurement and verification (Wang, Wang, Zeng, 

Srinivasan, & Ahrentzen, 2018). Mocanu et al. (2016) state that the future grid needs a system 

that can monitor, predict, schedule, learn, and make decisions regarding local energy 

consumption. Ryu et al. (2016) state that short term energy load forecasting is becoming 

increasingly important. A wide variety of applications is mentioned for accurate prediction 

models such as demand response, targeted dynamic pricing, load monitoring, energy storage 

operation and peak load reduction (Ryu, Noh, & Kim, 2016) (Lahouar & Slama, 2015).  Other 

authors explain that accurate forecasting is a vital issue to support individual and 

organisational decision making (Jurado, Peralta, Nebot, Mugica, & Cortez, 2013). Predicting 

energy demand should not only be done on an aggregated level but also individual building 

level so that the distribution of locally generated energy can be distributed based on the local 

demand. Also, the decomposition of energy demand, locally in short-term time intervals, helps 

to analyse energy demand patterns and give insight in potential energy conservation targets 

(Mocanu, Nguyen, Gibescu, & Kling, 2016). These are reasons why much effort is put into 

investigating different models and approaches to improve energy demand prediction.  

2.2.2 Energy demand forecasting over the years. 

Energy demand forecasting has been studied intensively since the 1950s (Jurado, Peralta, 

Nebot, Mugica, & Cortez, 2013). Early researches regarding demand forecasting, often used 

methods such as autoregressive integrated moving average (ARIMA), exponential smoothing, 

non-parametric regression and Kalman filter (Taylor, Menezes, & McSharry, 2016) (Ryu, Noh, 

& Kim, 2016). In the 1980s the Kalman filter was especially attractive an model to forecast 

demand, due to its computational efficiency. By the time computing power increased, 

researchers were able to explore the complex load data better. This led to rule-based and 

fuzzy logic expert systems to model the complexity in the load data, using domain knowledge. 

Despite the fact that these approaches were promising, they relied on rules that were 

extracted from experts’ and operators’ individual experiences, which are subject to 

inconsistencies and therefore not reliable (Taylor, Menezes, & McSharry, 2016). Another 

promising approach introduced to help the increase accuracy and reliability of demand 

forecasting is neural networks. Artificial neural networks (ANN) made experimenting with 

models that can identify complex nonlinear relationships in data and predict future behaviour. 

These models are theoretically weak and need rich data since they learn through examples 
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which consist of input features and output. This learning through examples enables the 

potential to discover a far greater range of relationships compared to models with pre-defined 

format (Taylor, Menezes, & McSharry, 2016). Artificial neural networks are therefore broadly 

used and have received lots, if not most, of attention and interest in scientific publications 

regarding energy demand prediction since it was introduced in the building services sector in 

the 1990s (Rodrigues, Cardeira, & Calado, 2014). More recent studies have used other ML 

techniques such as Support Vector Machines (SVM) and ensembled trees and showed that 

these models also achieve highly accurate performance results (Zhao & Magoulès, 2012). 

2.2.3 Commonly used approaches and methods 

As the essence of accurate energy demand forecasting has become clear, researches have 

started exploring and optimizing all sorts of different approaches. Many studies have 

compared or suggested different models to predict buildings’ energy demand. For some of 

these studies, the most important fragments, such as the used data types, number, 

characteristics of prediction variables, performance indicators, the results, and conclusions, 

are summarized.  

An important factor for the approach of energy demand forecasting is the forecasting horizon 

and corresponding time intervals. In general, a shorter prediction horizon (days, hours, sub-

hourly) is harder to predict than mediocre (weeks or months) and long-time (many months or 

a year) horizons, since short intervals are more susceptible for statistical variations. Besides 

the time intervals, the prediction entity is an important factor, for the same reason, as small 

energy-consuming entities are more sensitive for little variations. Please take this in mind 

when reading this review. 

Kontokosta and Tull (2018) used a yearly prediction horizon, which is considered as long.  The 

authors used three ML algorithms, which are ordinary least squares (OLS) regression, RF, and 

SVM to forecast annual building, district and city-scale energy demand of New York City, USA. 

The authors used a combination of actual building energy consumption and detailed property 

and building-level attributes, such as floor area, use type, and building year. This information 

is collected from three sources: (i) Local Law 84 energy disclosure provides building energy 

use information, building occupancy and physical characteristics of 20,000 buildings, (ii) city-

scale PLUTO provides parcel-level physical characteristics, zoning and use type data of all 1.1 

million buildings in New York, (iii) zip code energy data set provides aggregated annual energy 

consumption data of all 176 zip codes in New York. All types of buildings are included in the 

data set, residential, commercial, industrial, etc. For the RF and SVM, the hyperparameter 

settings were optimized by creating a grid of different parameters and stepwise testing all the 

different combinations. The best performing combination was eventually chosen to use for 

the actual prediction. This optimization step is conducted for both electricity and natural gas 

consumption.  Fivefold cross-validation is used to overcome the possibility of overfitting.  The 

model is validated at the building and zip code level using actual consumption data of 2014. 

The authors chose to use the mean absolute error (MAE) and the mean log accuracy ratio 

(mean-LAR) to compare the model accuracies. The feature importance is dependent on the 

scale-level, building or zip code level, and on the energy source; electricity or natural gas.  In 

general, building use, size and layout serve as the most important predictors. The authors 
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conclude that, for the OLS model, using more variables decreases the model accuracy. For the 

RF and SVM, the first six features provide the vast majority of the prediction ability. Overall, 

the authors conclude that there is little difference in the prediction ability and accuracy of the 

three used machine learning models.  When looking on the city and zip code scale, the simple 

OLS model performs best, on the building level prediction the SVM has the lowest MAE. 

Further, it is concluded that, given the used models, predicting natural gas consumption is 

harder than electricity, for both building level and zip code level scale. The authors state that 

the results have proven that there is a need for higher data transparency and data access from 

utility companies, as it is a valuable resource for helping cities to plan and evaluate 

sustainability and carbon reduction strategies (Kontokosta & Tull, 2017). 

Robinson et al. (2017) also compared multiple machine learning models to predict annual 

electricity demand. The prediction entities were commercial buildings. In total 14 different 

machine learning models are tested and compared based on the R2 and the Mean Absolute 

Error (MAE). They used data from the CBECS, published every five year by the U.S. Energy 

Information Administration (EIA). This dataset contains 6720 rows (buildings) of data which 

are representative for 5.6 million commercial buildings in North America. The data is gathered 

by means of a questionnaire to building owners. The models are based on five building and 

weather features; (i) number of floors, (ii) square feet, (iii) heating degree days, (iv) cooling 

degree days, and (v) principal building activity. This small amount of commonly accessible 

features makes applying this approach convenient, elsewhere. They conclude that gradient 

boosting regression models perform the best with an R2 score of 0.82. They note that they 

used the default settings of the models and did not optimize the hyperparameter settings 

(Robinson, et al., 2017). 

Li et al. (2010) predicted the annual energy consumption of residential buildings with a SVM 

and multiple ANNs; general regression neural network (GRNN), back-propagation neural 

network (BPNN), and radial basis function neural network (RBFNN). The models use 16 

technical building features such as; building size, window wall ratio, heat transfer coefficient, 

as well as annual electricity consumption of the buildings, as prediction features. Stepwise 

searching is used to select suitable parameter settings for each model. For the neural network 

models, the number of neurons in the hidden layers drastically impacts the results and is, 

therefore, an important parameter to optimize.  The parameters for the SVM are optimized 

by using genetic algorithms. The models are compared based on the relative errors, MSE, and 

root mean square error (RMSE). The study uses 50 houses for training and nine houses for 

testing. They conclude that the SVM and the GRNN perform significantly better than the BPNN 

and RBFNN given the nine testing samples (Li, Ren, & Meng, 2010).  

A Net-zero energy residential test facility is used to test the application of a regression (OLS) 

model to predict its energy performance by Kneiffel and Webb (2016). The test facility 

contains a PV system for electricity production and has data acquisition and control system to 

collect data and monitor the performance. A heat pump and a thermal solar system are used 

for space heating and domestic hot water; no natural gas connection is available. For lightning 

and insulation of walls and windows, high performing materials are used. The installed 

instruments measure weather data at the test facility such as temperature, humidity and solar 
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insulation, electricity consumption (of the building as a whole, as well as system-specific 

values), electricity production. These variables are collected every 3 or 60 seconds, dependent 

on the specific measurement. These observations collected one year and aggregated to daily 

average values for the analysis. The prediction is separately executed for the consumption and 

the production of electricity. The first two weeks of every month were selected to be the 

training data, which contains 140 daily consumption and production values. The RMSE and R2 

values are used as performance indicators for the prediction model. Also an analysis of 

variance (ANOVA) is conducted to determine the significance of the models and their 

coefficients. The proposed OLS models are compared with broadly used, physics-based, 

energy performance indication models. The authors found that the production model has an 

extremely strong linear correlation, while the consumption model shows a more unexplained 

variation. The suggested OLS model performs better than the other three tested, engineering-

based models. The higher accuracy is, according to the authors, mainly achieved through the 

actual in-situ data input of the test facility, where the engineering models work with the 

specifications of all materials and appliances (Kneiffel & Webb, 2016).  The study does not use 

actual occupancy behaviour, which is a major shortcoming although it is generally recognized 

that this plays an important role in the complexity of consumption patterns (Arregi & Garay, 

2017), by means of opening windows, usage of appliances and changing thermostat settings.  

A study by Xu et al. (2019) proposed an integrated social network analysis (SNA) and ANN to 

predict multi-building energy use. Specifically they try to predict the energy use index (EUI), 

in kWh per square meter. The SNA is used to determine reference buildings, buildings with 

similar energy use patterns, and identify correlations between the total energy usage of a 

building and that of a reference building and non-reference building. The data used in this 

approach consists of three years of monthly energy use of 17 buildings on the Southeast 

University campus in Nanjing, China. The different building types on the campus are; office, 

educational, laboratory and residential. Missing values and erroneous data is replaced by 

interpolating according to Lagrange polynomials. Features used in the prediction model 

consist of historical energy use, change in energy use and building characteristics such as 

materials, physical dimensions and building year. The model was evaluated and compared 

with a regular ANN based three indices; MAE, MAPE, RMSE. The study concludes that the SNA-

ANN model predicts the monthly energy use for the building groups, offices, laboratory and 

education around 90% accurate and residential dwellings 83.32% accurate. Dependent on the 

network strength between the reference buildings’ EUI and the total buildings’ EUI and the 

standard deviation this is outperforming the regular ANN  (Xu, Wang, Hong, & Chen, 2019).  

These long ranging prediction horizons are often very accurate and can be used for more 

general capacity planning. There are also studies which focus on mediocre energy demand 

prediction. Dong et al. (2015) have examined the feasibility and applicability of SVM in 

forecasting building loads monthly. They have used weather data such as monthly mean 

outdoor temperature, relative humidity, and global solar radiation. The approach is applied to 

four, randomly picked, buildings from a business district in Singapore. The used data was 

collected from an extended survey started in 1996, where building owners have collected 

monthly electricity consumption from the main meters. Data from October 1996 through 

October 1998 and the year 2000 were used as training data, and 2001 was used as a test set. 
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Different parameter settings are tested to find the best suitable model for the problem. To 

select the best model for each building, four performance indicators are used, the MSE, mean 

squared error of scaled value (S-MSE), cv-RMSE, and the percentage error (%error). The best 

performing models have all very accurate results with cv-RMSE of less than 3% and %errors of 

under 4%, which is excellent (Reddy, et al., 1997). Dong et al. (2015) compare their results 

with other researches regarding demand forecasting of commercial buildings and conclude 

that their results are superior with the lowest errors and highest prediction accuracy. The 

authors compared their research with studies who used other, daily or hourly instead of 

monthly, time intervals, which makes the comparison somewhat unfair. Nevertheless, the 

suggested SVM does prove to have a very high performance in the researched case. 

Advantages of SVM are the little parameters that have to be optimized compared to genetic 

programming or ANNs. This study has only optimized two parameters for the prediction 

model. A disadvantage of SVM is the large computation time when applied to large-size 

problems. This disadvantage was not relevant in this study since little data, monthly 

consumption of four buildings was used. The authors conclude that, due to the good results, 

future focus should be on short-term load data exploration (Dong, Cao, & Lee, 2005). 

Another mediocre prediction time horizon study is conducted by Tso and Yau (2005), who 

compared multiple machine learning models for prediction total weekly electricity 

consumption of individual dwellings in Hong Kong. Commonly used approaches are selected 

to be compared; Stepwise regression, Decision Tree (DT) and ANN (stepwise regression, and 

intercept regression were also considered). The comparison is made, based on two seasonal 

cases, winter and summer. For each case data for prediction variables were collected, by an 

extensive survey of over 1000 households. Detailed information about the ownership and 

usage patterns of appliances were collected and monitored. The monitoring of the appliance 

usage of the households has pointed out that the air-conditioning consumes on average 59% 

of the total electricity in a typical household in Hong Kong. Also, the housing type, household 

characteristics data is used as prediction variables. The square root of average square error 

(RASE) is used as a performance indicator to compare the three models. The authors conclude 

that the DT slightly outperforms the other more complicated methods based on the RASE 

score. The ANN performs worst, although the differences, based on the RASE score are very 

small. For all the models, three variables were proven to have a significant impact on the 

prediction; House (flat) size, Number of household members and ownership of air-

conditioning, are the most important in the summer period. The winter period indicates, 

housing type, number of household members and ownership of electrical water heater, as the 

most important prediction variables, which makes sense. The authors remark that the 

inclusion of meteorological features should improve the model fitting results (Tso & Yau, 

2005). 

The short-term prediction horizon, with aggregated data of a maximum of one day, is covered 

in scientific publications. Biwas et al. (2016) conducted a case study to assess the capabilities 

and possible implementations of two ANN based prediction models, a ‘Levenberg-Marquardt’ 

and an ‘Output Weight Optimization’ variant. The MATLAB neural network toolbox was used 

to run the models. Two specially constructed research and demonstration dwellings on the UT 

Tyler campus were used as test facilities. These houses are designed to serve as realistic test 
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facilities for developing and demonstrating new technologies related to energy efficiency. Due 

to the many energy efficiency measures applicate at these dwellings, the energy usage is 

approximately half of that of a similar regular dwelling. The test buildings only have an 

electricity connection and heating is provided by means of a HP. Every five minutes the energy 

consumption and weather conditions of three months (72 days), was collected at the test 

dwellings. The houses are however not occupied, which is a major shortcoming of the test 

facilities, since user behaviour is known to have a significant impact on the energy 

consumption profiles. Both ANN models have identical setup and use similar prediction 

features, number of days, temperature and solar radiation. 70% of the data is used for training 

and the remaining 30% for testing. Each model is used to predict the total daily energy 

consumption of the dwelling and the hourly electricity usage of the HP. The R2 was used as a 

performance indicator to compare two models. The Levenberg-Marquardt model performs 

slightly better than the Output Weight Optimisation model. The authors mention that the 

difference is not significant due to the small number of data points used. Further, it is 

concluded that the prediction for the electricity consumption of the HP is more accurate than 

the total energy consumption (Biwas, Robinson, & Fumo, 2016). Although detailed, five-

minute interval energy consumption data is available, the authors chose to test the models 

on aggregated daily consumption data.  

Most of the studies which suggest or test the models for short-term load forecasting focus on 

large energy consuming entities, such as Darabellay and Slama (2000), who  tested different 

models to predict the electricity demand of the entire Czech Republic. These authors 

investigated the linear and nonlinear correlation of electric load time series profiles. This is 

tested by predicting the short term (four different time horizons of 1h, 12h, 24h and 36h) 

electric load by means of a nonlinear model, ANN, and a linear model, ARMAX. Two years of 

hourly intervals of electric load of the Czech Republic is collected. From this data, some 

periodic components have been visually identified; there is an annual, weekly and daily cycle 

visible in the load profiles. The, the nature of the correlation between time and electricity load 

is investigated. The autocorrelations of the electric load over time is determined, by observing 

the differences in electric load value over a time interval. The authors found that the nonlinear 

correlations were weak, however, they were not sure whether to completely neglect these 

correlations in a predictive model. The data is split into two sets, working days and holidays. 

For the prediction, only the working days are used. One year of data is used for training, and 

one year for testing. For the ANN model, the Matlab neural network toolbox was used, and 

the linear ARMAX model is generated by means of genetic programming. For the daily 

forecasting, average daily outdoor temperature, which has a linear correlation with electricity 

consumption in the Czech Republic (Darbellay & Slama, 2000), is used as the prediction 

variable. The normalized mean square error (NMSE), MAPE and the maximum absolute 

percentage error (maxAPE) were used to determine the model accuracy. It is concluded that 

the prediction abilities of the linear model are slightly superior to that of the nonlinear model. 

This is in line with the earlier conclusions regarding the linearity of the autocorrelations.  The 

main point of the research is the advice to check whether the problem is indeed nonlinear 

before embarking some complex nonlinear model. The authors have put more effort in 

optimizing the ARMAX model compared to the ANN, and mention that experimenting further 
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with the ANN model would have resulted in better results, yet it would have cost them more 

time than building the ARMAX model (Darbellay & Slama, 2000).  

From the available l iterature on prediction models with hourly intervals, note that most of 

the studies focus here on large energy consuming entities. These studies towards short-term 

prediction models are chosen because they are most relevant for this study.  

Lahouar and Slama (2015) used a random forest for day-ahead electric load forecast. A large 

dataset, of electricity and gas is used with half-hourly intervals from 1 January 2009 to 31 

August 2014 from the Tunisian power system. As a comparison, hourly data from 

Pennsylvania-New Jersey-Maryland Interconnection, USA, is also used. Data preparation 

consisted of aggregating the data to hourly values and, removing missing values, by replacing 

them with previous ones. No normalisation is applied, the data consists of real ranges. Special 

days, such as public holidays, are intentionally kept within the dataset so that the model could 

learn their behaviour. The training set for the prediction  model consists of all the available 

data up until the prediction day. Model inputs used for the RF concern of autoregressive 

features, two previous days at the same hour as well as morning and evening peaks of the 

previous day. Further, external factors, month number, day type, maximum and minimum 

temperature of the predicted day are used as features. Using weather data of the predicted 

day are not possible when predicting a day ahead. Therefore, weather forecast data is used. 

Bad weather forecast entails misbehaviour of the prediction.  The RF is compared with 

extensively used ML models, ANN and SVM. Also, a persistence model, where the prediction 

is exactly the same load demand as the previous day, is added as a reference.  For the ANN 

and SVM no extensive hyperparameter tuning is conducted, only slight manual adjustments 

for optimisation. For each season in 2013, a week of hourly electric load is predicted by the 

models, for the USA data as well as the Tunisia data. A separate prediction is run for the special 

days, with feature selection by an expert on the cultural background of these days. The 

combination between the RF and expert input is able to capture complex load behaviour and 

can solve special cases that are specific to cultural or religious events, by means of appropriate 

inputs. The RF performs overall better than the ANN. Dependent on the season and weekday, 

the RF performs equal, better or worse than the SVM, on both the Tunisian and the USA set 

(Lahouar & Slama, 2015). 

Another study compared a new deep neural network algorithm called DeepEnergy with a 

SVM, a Random Forest (RF), a Multilayer Perceptron (MLP) and a Long Short Term Memory 

neural network (LSTM). A dataset from the U.S. district public consumption and a dataset of 

electric load provided by the Electric Reliability Council of Texas was used. This dataset 

represents roughly 90 percent of the electric load of Texas. In this study, the models trained 

on 7 days of hourly energy loads (168 hours) to  predict for 3 days, 72 hours, for the whole 

state of Texas. The input for these models is purely the past energy loads. This study compares 

the models with Mean Absolute Percentage Error (MAPE) and Cumulative Variation of Root 

Mean Square Error (CV-RMSE). The authors mention that the RF does outperform the decision 

tree and the SVM, which proves that the model ensemble solution is effective in the energy 

demand forecasting. On both performance indices, the DeepEnergy model outperforms the 

other models, closely followed by the RF and the LSTM (Kuo & Huang, 2018). It is notable that 
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the amount of data, used in this study is fewer than comparable studies. The large amount of 

electricity consumption appliances creates relatively smooth graphs, which eases the 

prediction.  

Taylor et al. (2016) have compared six algorithms for forecasting electricity demand; 

autoregressive moving average (ARMA), linear regression (OLS) with principal component 

analysis (PCA), exponential smoothing, ANN and two simple benchmark methods. In the study, 

two datasets are used, one from Rio, Brasil, which contains hourly electricity consumption of 

the whole city, and one from England and Wales which contains the total electricity used every 

30 minutes. They tested all six models on both datasets and compared the results based on 

the MAPE. They conclude that the exponential smoothing model  performs the best overall, 

followed by the PCA linear regressing model. This points out that more simple methods, which  

requires little domain knowledge, can outperform sophisticated alternatives, in this case ANN 

and ARMA  (Taylor, Menezes, & McSharry, 2016). A notable remark Taylor et al. (2016) make, 

is that they used a ANN approach very similar to the one Darbellay and Salma (2000) used, but 

got different results (Darbellay & Slama, 2000) (Taylor, Menezes, & McSharry, 2016). Taylor’s 

achieved accuracy is significantly lower, which again indicates that the data, on which the 

training and prediction is executed, plays an important role in the suitability and quality of the 

model. 

The study of Huo et al. (2016) compared SVM and RF for short-term electric load forecasting. 

For prediction variables, the month number, weekday indicator, holiday indicator, minimum 

temperature, maximum temperature and previous days’ load were used. The MAPE was used 

as the performance indicator to compare the models. Hourly electricity demand data from 

different sources is used, from multiple cities worldwide. This enables investigating the impact 

of the nature of the data on the different models. The programs were run in Matlab bridged 

with R environment, by Matlab-R link with SVM and R packages installed. For both the SVM 

and the RF, the parameters are optimized by step wise changes. The authors conclude that 

both models are excellent for short-term load forecasting. Overall, no significant differences 

could be observed between the two prediction models. The performance of these models is 

dependent on the parameter settings, the data and even seasons. Parameter settings are 

more important for the model fitting of SVM than of the RF (Huo, Shi, & Chang, 2016).  

The study of Juardo et al. (2013) tested different ML techniques to for short-term electric load 

forecasting; RF, ANN, SVM, and Fuzzy Inductive Reasoning. Data from three locations are used, 

the entire campus of University of Catalonia, and two office buildings in Barcalona of 200m2 

and 50m2. For the campus data, a complete year of hourly electricity consumption data is 

collected. For the office buildings, approximately six months of hourly data is collected. The 

input for the models only consists of historical energy load behaviour, both electricity and gas. 

Validation of the models for the campus data, is based on four days of data in different 

seasons. For the office buildings, three days are used for validating the model. The training set 

consists of all the available data up until the prediction day. The number of data points do 

differ per validation day. The normalized root mean square error (NMSE) is used to compare 

the different models with each other. The authors conclude that the Fuzzy Inductive 

Reasoning model has the best performance based on the NMSE, closely followed by the RF. 
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The SVM and ANN show less accurate results, especially compared to the computational 

efforts of the models, indicating that these models are not the best solution for the used data. 

The RF and Fuzzy Inductive Reasoning model can handle sudden changes. Further, it is 

concluded that the Fuzzy Inductive Reasoning model, RF and ANN are computationally 

efficient enough to be used as real-time prediction models. The authors recommend that the 

Fuzzy Inductive Reasoning model and the RF should be studied and used more in-depth for 

short-term electricity load forecasting (Jurado, Peralta, Nebot, Mugica, & Cortez, 2013).  

Another study which has focussed on predicting hourly energy demand is that of Wang et al. 

(2018). The authors of this study have used a random forest to predict the hourly electricity 

demand for two institutional buildings on the campus of the University of Florida, with 

surfaces of 47.270 and 72.520 square feet.  In total, eleven prediction variables were used in 

the prediction model. Meteorological prediction features such as; temperature, humidity, 

wind speed, rainfall and solar intensity, and time related data such as indicators for days of 

the week were used. Also they used occupancy data of the buildings. The occupancy was 

estimated based on the operation and class schedule of the buildings. A data transformation 

process was performed to determine the hourly occupancy of each building. This is something 

which not many other researches have implemented in energy prediction modelling, probably 

because such specific information is hard to get. The output, or dependent variable, is the 

hourly building level electricity usage. The research has used one whole year of hourly data, 

consisting of 8760 time stamps. After removing observations with missing values for both 

buildings, an acceptable 99% and 95% of the observations were preserved for the prediction 

model. Two approaches were used to test the applicability of RF for energy demand 

prediction: (i) complete year as a data set, (ii) months as separate sets. In the latest mentioned 

approach they tested three months, February, July and October. The monthly set contain 

significantly less data points. However, the total trend in the dataset will be less variable when 

only a month is used, due to the seasons they are in. They used 80% of the data for training 

and 20% for testing, by randomly splitting the data into two sets, for both the yearly and the 

monthly sets. They compared the RF with a single Regression Tree (RT) and a Support Vector 

Regression model (SVR) to see the performance differences. They compared the models based 

on the R2, RMSE, Performance Index (PI) and MAPE. For both buildings, the RF outperforms 

the other two models, in training and testing, on all the performance indicators. Regarding 

the variable importance, the authors conclude that for the yearly models, similar variable 

importance results are observed. The monthly models did differ more, which indicates that 

certain variables play a more important role depending on the season. The occupancy feature, 

which is not much used in other researches, did have big impact on the prediction results. 

Based on this result, it is recommended in this study that future researches should try to 

implement more user behaviour in the field of energy demand prediction (Wang, Wang, Zeng, 

Srinivasan, & Ahrentzen, 2018). 

Fan et al. (2017) used a deep learning approach to predict 24 hour ahead cooling load of a 

large institutional building in Hong Kong. The authors describe deep learning as a collection of 

machine learning algorithms which are powerful in revealing nonlinear and complex patterns 

in big data. A full year of 30-minute interval data is collected for, temperature, humidity, 

supply and return chilled water temperature, and the flow rate of the chilled water 
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temperature. The cooling load, which is the dependent variable in this study, is calculated 

based on the three latest mentioned variables. Also, time data, e.g. month, day type, and hour 

of the day, is used as prediction variable. Lastly, the previous 24 hour of cooling load is used 

as a prediction variable, adding 48 more features, due to 30 minute interval. Seven different 

models were used in the same way to see the performance differences namely, Multi Linear 

Regression (MLR), RF, SVM, Elastic Net (ELN), Gradient Boositing Machine (GBM), Extreme 

Gradient Boosting Machinen (XGB), and ANN.  The MAE, RMSE and cv-RMSE, are used as 

performance indices to compare the model performances. The data set is split into a training, 

testing and validation set, with proportions of 70%, 15% and 15% respectively.  Stepwise 

optimisation for the hyperparameter settings is used for optimisation. The MLR and ELN, 

which assume linearity,  have the poorest performance. The XGB has overall the best 

performance followed by the other non-linear models. The authors mention that there are 

large differences between the performance with basic, default, settings and optimized 

settings. The authors conclude that using deep learning approach can provide accurate and 

reliable 24 hour ahead building cooling load prediction (Fan, Xiao, & Zhao, 2017). 

Li et al. (2009) have compared SVM and different ANNs to predict the hourly cooling load of 

an office building in Guangzhou, China. In this study the Matlab 7.0 Neural Network toolbox is 

used to train and develop models. Features such as meteorological data, relative humidity, 

temperature and solar radiation as well as historical data of cooling load are used. In total six 

months of hourly data is collected for these features. Five months are used for training, and 

one for validation. They compared the models based on the Mean Relative Error (MRE) and 

the Root Mean Square Error (RMSE). The SVM performs slightly better than the three ANN 

models, but all models have sufficient accuracy for engineering purposes (Li, Meng, Cai, 

Yoshino, & Mochida, 2009).  

Ryu et al. (2016) used two different Deep Neural Network (DNN) approaches that are 

suggested to identify the applicability, (i) the restricted Boltzmann machine, and (ii) rectified 

linear unit DNN. Hourly electricity consumption data provided by Korea Electric Power 

Corporation. For eight different industrial categories, (Retail; R&D; Healthcare; Networking 

business; Vehicle and Trailer manufacturing; Electronic component and Computer 

manufacturing; and other manufacturing) five consumers are randomly selected.  Also, 

weather data, such as cloud coverage, solar radiation and temperature, together with 

indicators for seasons, month, and date are used as prediction variables. All data, including 

the hourly consumption data, is normalized (when numerical values are considered), cleaned 

and restructured before used in the prediction models. The focus for the prediction is only on 

business days.  For each consumer, 750 days of hourly data is gathered for three years without 

holidays. The MAPE and the RRMSE are used as performance indicators. To overcome 

overfitting, k-fold cross-validation is used to determining the stopping criteria for the training 

models. The two suggested DNNs are compared with Shallow Neural Network (SNN), ARIMA, 

and DSHW to verify the DNNs performance of forecasting energy demand for individual users. 

This comparison is executed in three cases; single load types various load types, and 

aggregated load types. This rather extensive experiment shows that the DNN based models 

can be trained well, with up to three years of customer load data for predicting 24-hour load 
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profiles day-ahead, without overfitting. Both suggested DNN based models, significantly 

outperform the other tested models, based on the MAPE and RRMSE (Ryu, Noh, & Kim, 2016). 

Publications with short term energy demand prediction models for individual households are 

not present in abundance. One of the fewer studies which try to forecast hourly electricity 

demand for individual households is that of Rodrigues et al. (2014). They have used an ANN 

to predict households’ electricity usage up to three days ahead. The authors did deliberately 

chose not to use weather data, such as temperature, as a prediction variable, to prove the 

possibility of obtaining good results without using extended amount of data. Still, the model 

uses 16 inputs such as; available electric appliances, apartment area and number of 

occupants. These input variables are very user specific and rarely used in other researches. 

They used 6 weeks of hourly electricity consumption data of 93 households in Lisbon, Portugal. 

Two-thirds of the data is used for training and testing, and one third is used for validation. The 

R2, MAPE and the standard deviation of error (SDE) are used to indicate the models’ 

performance. The Levenburg-Marquardt algorithm was used to simplify and reduce the 

computational effort to run the ANN, by means of pruning. This algorithm determines which 

units are not necessary for the solution and removes them making the model more efficient. 

The conclusion of this study is that their ANN can accurately forecast daily, average and 

maximum, and hourly energy consumption (Rodrigues, Cardeira, & Calado, 2014). 

Houimli et al. (2019) used a ANN to forecast the half hourly electric load demand of Tunisia. 

Nine years, 2000 to 2008, of half hourly electric load demand is used in the prediction model. 

The first eight years are used for the training and validation of the model, and the last year is 

used for testing. As prediction variables, the past days’ electricity profile, 48 inputs, together 

with meteorological data, minimum and maximum temperatures, and calendar variables, 

such as type of day, week, month, year, are used. All the used data is normalized, which is 

essential for a good ANN performance (Houimli, Zmami, & Ben-Salha, 2019). A pattern search 

optimisation algorithm is used to determine the best number of hidden layers and the number 

of neurons in each layer. The proposed ANN, with Levenberg-Marquardt algorithm, is 

compared with two other ANN model, the resilient backpropagation and conjugate gradient. 

For the evaluation of the model several performance indicator are uses; the MAE, MPE, MSE, 

MAPE and RMSE. Five average day profiles, Monday, Thursday, Friday, Saturday, Sunday, from 

2008 are used in the final testing of the model. The proposed Levenberg-Marquardt ANN 

outperforms the other two tested models in all cases (Houimli, Zmami, & Ben-Salha, 2019). 

The usage of testing on average day profiles of an entire year makes the prediction less 

impressive. These profiles are completely smoothed out and no sudden changes, spikes or 

whatsoever appear in these profiles.  
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Table 1 summarizes the global approaches from some of the, energy demand prediction 

related scientific articles, covered in this literature review. 

Table 1 Literature review summary 

Authors Models used Performance 
indicators 

Time interval 
of prediction 

Prediction entity Data used 

(Kontokosta & Tull, 
2017) 

OLS, SVM, RF MAE, Mean-LAR Annual Building, zip 
code and city 
level 

1 year 

(Robinson, et al., 
2017) 

Multiple Tree, 
OLS and SVM 
based models 

MAE, R2  Annual Commercial 
buildings 
(6000+) 

1 year 

(Li, Ren, & Meng, 
2010) 

ANN, SVM MSE, RMSE Annual Residential 
buildings (59) 

1 year 

(Kneiffel & Webb, 
2016) 

OLS R2, RMSE Annual Individual 
residential 
building (1) 

140 days 

(Xu, Wang, Hong, & 
Chen, 2019) 

SNA-ANN MAE, MAPE, 
RMSE 

EPI[1] Buildings (17) 3 years 

(Dong, Cao, & Lee, 
2005) 

SVM MSE, S-MSE, cv-
RMSE, %error 

Monthly Commercial 
buildings (4) 

4 years 

(Tso & Yau, 2005) OLS, RT, ANN RASE Weekly Individual 
residential 
buildings (1000) 

6 months 

(Biwas, Robinson, & 
Fumo, 2016) 

ANN R2 Daily Individual 
residential 
buildings (2) 

72 days 

(Darbellay & Slama, 
2000) 

ANN, ARMA MAPE, maxAPE, 
NMSE 
 

Daily, Hourly Country (Czech 
Republic) 

2 years 

(Lahouar & Slama, 
2015) 

ANN, PER, RF, 
SVM 

MAPE Hourly Country (Tunisia) 5,5 years 

(Kuo & Huang, 2018) DeepEnergy[2], 
SVM, RF, MLP, 
LSTM 

cv-RMSE, MAPE Hourly State (Texas) 10 days 

(Taylor, Menezes, & 
McSharry, 2016) 

ARMA, OLS, 
ANN 

MAPE Hourly City level 30 weeks 

(Huo, Shi, & Chang, 
2016) 

RF, SVM MAPE Hourly City level Variable per 
model 

(Jurado, Peralta, 
Nebot, Mugica, & 
Cortez, 2013) 

ANN, Fuzzy 
logic, RF, SVM 

NMSE Hourly Campus (1), 
commercial 
buildings (2) 

1 year 

(Wang, Wang, Zeng, 
Srinivasan, & 
Ahrentzen, 2018) 

RT, RF, SVM R2, RMSE, PI, 
MAPE 

Hourly Large 
institutional 
buildings (2) 

1 year 
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(Fan, Xiao, & Zhao, 
2017) 

ANN, GBM, 
XGB, SVM, RF, 
ELN, MLR 

cv-RMSE, MSE, 
RMSE 

Hourly[3] Institutional 
building (1) 

1 year 

(Li, Meng, Cai, 
Yoshino, & 
Mochida, 2009) 

ANN, SVM MRE, RMSE Hourly[3] Commercial 
building (1) 

6 months 

(Ryu, Noh, & Kim, 
2016) 

ANN(multiple), 
RIMA, and 
DSHW 

MAPE, RRMSE Hourly Industrial 
buildings (5) 

750 days 

(Rodrigues, 
Cardeira, & Calado, 
2014) 

ANN R2, RMSE, 
MAPE, SDE 

Daily, Hourly Individual 
residential 
buildings (93) 

6 weeks 

(Houimli, Zmami, & 
Ben-Salha, 2019) 
 

ANN MAE, MPE, MSE, 
MAPE, RMSE. 
 

Half-hourly Country (Tunisia) 9 years 

Some studies focus on electricity, natural gas, or both.  
[1]Energy performance index, thus no quantitative energy consumption. 

[2]ANN based model. 
[3]Building cooling load. 

 

Some studies have reviewed publications on the usage of different models to predict energy 

demand profiles.  Zhao and Magoulès (2012) conclude that each model has its advantages in 

certain cases and applications. In general, engineering-based models are difficult to create and 

show a large variety in prediction accuracy. Basic statistical models are relatively easy to 

develop but can be inaccurate and are less flexible. Artificial intelligent models, such as ANN 

and SVM, are good at solving nonlinear problems, which makes them very suitable for energy 

demand prediction, as long as the hyperparameters are tuned appropriately. In many cases 

SVM have even more superior results than the ANN approaches. Drawbacks of these two 

models are that they require sufficient historical data and are complex, which makes 

interpretation of results difficult. The authors state that the establishment of databases with 

precise and sufficient historical data of different entities is necessary to further research 

develop of reliable and effective prediction models. Also, the optimisation of parameter 

settings when using ML models is an important point (Zhao & Magoulès, 2012).  

Another, more extensive, literature review study is conducted by Seyedzadeh et al. (2018). 

Not only did they review the ML models utilised for energy demand prediction, but also 

different pre-processing techniques to enhance prediction accuracy are discussed. The 

authors conclude that ML has shown great potential for energy modelling and assessment for 

different types of buildings. It has been shown that SVM outperforms ANN in load forecasting 

and has the potential to build models from limited amount of data. The authors do question 

this statement since they mention that the earlier used ANN models were from a simple 

structure and might not have the optimal hyperparameter settings. The Gaussian Process 

models (GP) are the only ones that have been used with uncertainty assessment.  This is 

however not the only possible model to apply uncertainty and sensitivity analysis to. The 

authors recommend devoting additional research to these approaches. It is also 
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recommended that more thorough research is desired with a focus on the tuning of the 

models. So that selecting ML models for energy demand forecasting becomes more 

convenient. The authors mention, as also brought forward in this literature study, that some 

studies did fairly not compare different ML models. A common mistake is putting much effort 

in optimizing one model and comparing it with default versions of other models which gives 

an unreliable result (Seyedzadeh, Rahimian, Glesk, & Roper, 2018).  

2.2.4 Model selection 

Many studies have suggested and compared different machine learning models for predicting 

energy demand of buildings and point towards the most promising algorithm in their case. 

Overall it is challenging to determine the best machine learning model, since the covered 

literature concludes that many models can provide decent accuracy when used appropriately, 

with sufficient data and optimized parameters. Multiple authors agree that there is no method 

that is clearly better than others (Taylor, Menezes, & McSharry, 2016). It is stated that the 

choice of the model is determined by the nature of the data (Darbellay & Slama, 2000). 

Therefore, it is essential to analyse the available data and application, to determine which 

model suits best in the given situation (Seyedzadeh, Rahimian, Glesk, & Roper, 2018). 

Empirically test different prediction models first, without optimizing hyperparameters, to see 

which model naturally performs better on a given dataset, is useful to select a proper method.  
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2.3 Research gap 
The growing concerns about energy consumption in residential buildings have driven an 
interest in low- and net-zero energy buildings and legislation to increase building energy 
efficiency (Kneiffel & Webb, 2016). Although the residential building sector accounts for a 
large portion of the growing energy demand in the world today, the majority of the research 
is focused on commercial, industrial and transportation (Swan & Ugursal, 2009). Residential 
energy consumption is thus, underdeveloped for optimal and robust solutions (Biwas, 
Robinson, & Fumo, 2016). One of the reasons that residential energy consumption is less 
studied, is the lack of financial incentive compared to industrial, commercial and 
transportation sectors (Swan & Ugursal, 2009). The privacy sensitivity of collecting 
households’ energy consumption data does also provide an obstacle in such studies (Biwas, 
Robinson, & Fumo, 2016). Authors of different studies have stressed the essence of additional 
research on smart grid solutions. The integrated grid solutions are important since they enable 
other sustainable energy solutions, such as EV, variable renewable sources and demand 
response (Kuo & Huang, 2018). More research is desired for enhancing forecasting capabilities 
to identify effective and appropriate use of renewable energy and energy storage (Rodrigues, 
Cardeira, & Calado, 2014). Although the availability of smart metering data has led to the 
expectation that electricity demand prediction will move toward the individual household 
prediction (Fumo & Biswas, 2015), most studies focus on large energy consuming entities or 
predict for a aggregated daily, monthly or annual values. Consumption of many different 
consumers accumulated, or large entities in general, often show a more smooth and constant 
demand pattern, which makes predicting overall more accurate.  
 

Since many studies have already tested a variety of machine learning models, a combination 

of methods should be used to add significant value in the field of research. By combining 

different methods, an improvement can be made relative to only running an optimized 

algorithm, which most studies have done.  

Lastly, most of the studies have not incorporated renewable energy production at the demand 

side, when predicting the energy demand. As this is becoming more and more the norm, 

additional research, regarding predicting consumers’ energy demand with renewable energy 

generation systems on-site, is desired. 
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3. Methodology  
 

The methodology of this research contains a combination of methods, to predict short term 

electricity demand of residential buildings. To improve the prediction accuracy, a clustering 

algorithm will be run preceding on the prediction model. Clustering households based on their 

electricity consumption profiles could be beneficial for the prediction accuracy. An operating 

system will be suggested to identify opportunities for improving self-sufficiency, by sharing 

electricity between clusters. The underlying theoretical principles of the used models will be 

clarified in the upcoming three sections of this report.  
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3.1 Clustering model 
Many studies, as described in the previous chapter, have used different approaches to 

improve energy demand prediction accuracies. In this study a new approach is suggested for 

this same objective. Before the prediction model will take place, the houses in the 

neighbourhood will be clustered based on their electricity demand profiles. The goal of this 

clustering is to group houses with similar electricity demand patterns, so that the prediction 

for these clusters is more accurate and robust.  

K-means clustering is a simple and convenient approach to divide a dataset into K distinct, and 

non-overlapping groups. This approach scales well to large number of samples, and has been 

used across a large range of application areas in different fields. The main principle for the K-

means clustering approach is to minimize the ‘within cluster variation’. Taking into account 

two important properties; (i) each observations, in this case demand profile, belongs to one 

of the K clusters. (ii) no observations belong to more than one cluster, thus, non-overlapping 

clusters. The problem that has to be solved to create good clusters according to the K-means 

method is (James, Witten, & Hastie, 2017): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝐶1 … 𝐶𝐾

 {∑ 𝑊(𝐶𝐾)

𝐾

𝐾=1

} 
(1) 

Equation 1: K-means clustering objective. 

Where 𝐾 is the number of cluster, 𝐶1 … 𝐶𝐾 represent all clusters and 𝑊(𝐶𝐾) is a measure of 

the amount by which the observations within the clusters differ from each other, named; the 

within cluster variation. The within cluster variation, summed over all the clusters, has to be 

as small as possible, to create good clusters according to the k-means approach. 

The within cluster variation can be expressed in a number of ways, however, by far the most 

used method involves the squared Euclidean distance. Here, within the cluster variation is 

expressed as (James, Witten, & Hastie, 2017);  

𝑊(𝐶𝐾) =
1

|𝐶𝐾|
∑ ∑(𝑥𝑖𝑗 − 𝑥𝑖′𝑗)

2

𝑝

𝑗=1𝑖,𝑖′∈𝐶𝐾

 (2) 

Equation 2: Within cluster variation. 

In Equation 2, corresponding to this research work, |𝐶𝐾| gives the number of houses in the Kth 

cluster. 𝑥𝑖𝑗 represents the value of feature 𝑗 of observation  𝑖. 𝑥𝑖′𝑗 is the average observation 

value of the cluster, or centroid.  

Further, 𝑝 stands for the total number of features used, in this case, only one feature is 

considered; total grid electricity demand. To put this equation to words; the within cluster 

variation for the Kth cluster is the sum of all the pairwise squared Euclidean distances between 

the observations of the Kth cluster, divided by the total number of observations in the Kth 

cluster (James, Witten, & Hastie, 2017). 

 

 



Machine learning approach to predict the energy sharing potential in a neighbourhood  V.B.C. (Vince) Bergkamp 

47 

 

The two previously described equations combined, gives the optimization problem that 

defines K-means clustering; 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝐶1 … 𝐶𝐾

 {∑
1

|𝐶𝐾|
∑ ∑(𝑥𝑖𝑗 − 𝑥𝑖′𝑗)

2

𝑝

𝑗=1𝑖,𝑖′∈𝐶𝐾

𝐾

𝐾=1

} (3) 

Equation 3: Optimization problem of k-means clustering. 

In this study only one feature is used in the clustering, the optimization problem can therefore 

be simplified as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝐶1 … 𝐶𝐾

 {∑
1

|𝐶𝐾|
∑ (𝑥𝑖 − 𝑥𝑖′)

2

𝑖,𝑖′∈𝐶𝐾

𝐾

𝐾=1

} (4) 

Equation 4: Optimization problem corresponding with research 

The algorithm that solves Equation 4 consists of two steps.  

(I) Randomly assign a number, from 1 to K, to each of the houses. These serve as 

the initial cluster assignments for the houses.  

(II) Iterate the following, until the cluster assignment stops changing: 

a. For each of the K cluster, compute the cluster centroid, the average values 

for each observation of the cluster. The Kth cluster centroid is the mean of 

the 𝑝 feature for the houses in the Kth cluster. 

b. Assign each house to the cluster whose centroid is the closest, by using the 

Euclidean distance. 

This algorithm is guaranteed to decrease the value of the objective function at each step. 

However, the (local) minimum that is reached, is dependent on the initial assignments of 

houses to clusters.  Therefore, it is important to run the algorithm multiple times with different 

random initial configurations. So that the best solution, with the smallest outcome of Equation 

3, can be selected (James, Witten, & Hastie, 2017).  

This clustering technique will be executed in Python, by means of the Scikit-learn module 

‘cluster.kmeans’. This function has some parameters to be set before running it.  

n_cluster:  Represents the number of desired clusters.  

n_init:  The number of times the k-means algorithm runs, with different initial 

assignment of houses to clusters.  

max_iter: Maximum number of iterations of the k-means algorithm for a single 

run. In the case the clusters keep changing after a lot of iterations, this 

is the stopping rule.  

When observing the electricity demand profiles of the clusters for a whole year, trends are 

very similar. Individual houses can have different energy consumption behaviour in winter 

compared to summer. This causes the clustering algorithm to distribute the clusters unevenly. 

In fact, when clustering the houses based on the full 2 years of data, the 70 houses are  

distributed over four clusters as: 67-1-1-1, which adds no value to the approach. When making 
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the period smaller, the model can, after a number of iterations, determine clusters with 

substantial  number of houses in it. To select a suitable period for the clustering model, 

multiple time periods are tested, seasons (three months), months and two week. The season 

and month periods show similar, although less extreme, behaviour as the two years of data. 

Two weeks seems to be a suitable period for the k-means clustering approach to create decent 

clusters. Each prediction day, a clustering algorithm must be executed.  

To determine a suitable number of clusters (n_clusters), multiple tests have been conducted; 

six, five and four clusters, as shown in Appendix II – Cluster sizes.. When the parameter 

n_clusters is set to five or six, it is observed only three clusters have substantial size, the 

remaining clusters contain only a few houses. The small clusters in these cases do not add 

value to the overall prediction accuracy, so they will be added to the second smallest cluster 

which makes the effective number of clusters smaller. Based on this test the best number of 

clusters is selected to be four, and this will be used to do the clustering.  

The number of times the clustering algorithm randomly puts centroids in the data (n_init) is 

on default set to 100. This means the model is run 100 times and selects the cluster 

distribution, from these 100 runs, where the total within cluster variation is the lowest. The 

maximum number of iterations (max_iter), which is an early stopping rule for when the cluster 

distribution keeps on changing, is set to 1000. The default setting of max_iter is 300, this is 

increased to 1000, to be sure the best cluster distribution is achieved and the algorithm is not 

stopped before the lowest within cluster variation is achieved.  

Table 2 shows the parameter settings for the k-means clustering model that will be used 

throughout the research. 

Table 2 Parameter settings clustering model 

Parameter Value 

n_clusters 4 
n_init 100 
max_iter 1000 
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3.2 Prediction Model 

3.2.1 Model selection 

The literature has pointed out that multiple models can accurately predict energy demand 

when used under the right circumstances. To make a well grounded decision, multiple 

algorithms are tested with their default settings to see which model naturally performs best 

on the given data of individual houses without clustering. This is done by using the built in 

Matlab application Regression Learner. This application offers the possibility to test multiple 

algorithms on a dataset relatively quickly. In total  15 algorithms are tested, namely, multi 

linear regression models, ensembled trees, support vector machines and single prediction 

trees. Table 3 shows the results for the house ID-7056 as an example. In total 5 randomly 

picked houses are tested to determine the best performing algorithm empirically. In the used 

models, 70% of the two years’ data is used for training and 30% for testing. For each tested 

algorithm, the R2, RMSE, MSE and MAE are generated. The model with the best average values 

of the performance indices, of these 5 tests, is selected.    

Table 3 Algorithm comparison, example house ID-7056 

Model R-squared RMSE MSE MAE 

Linear regression[1] 0.66 0.4160 0.1730 0.2594 

Robust linear regression[1] 0.65 0.4248 0.1805 0.2432 

Interaction linear regression[1] 0.67 0.4137 0.1711 0.2510 

Ensemble Boosted trees 0.67 0.4080 0.1664 0.2363 

Ensemble Bagged trees 0.67 0.4082 0.1666 0.2421 

SVM Linear [1] 0.65 0.4226 0.1786 0.2428 

SVM Quadratic 0.67 0.4138 0.1712 0.2293 

SVM Cubic 0.65 0.4213 0.1775 0.2343 

SVM Fine Gaussian 0.44 0.5367 0.2881 0.2110 

SVM Medium Gaussian 0.66 0.4173 0.1742 0.2316 

SVM Coarse Gaussian  0.66 0.4170 0.1739 0.2339 

Tree Coarse 0.65 0.4228 0.1788 0.2554 

Tree Medium 0.61 0.4466 0.1995 0.2736 

Tree Fine 0.51 0.4979 0.2479 0.3032 
House 7056 
[1]Theoretically not suitable due to non-linear relationships between autoregressive features 
and the dependent variable.   

 

This empirical test points out that the ensemble trees have the best performance among the 

tested algorithms; highest coefficient of determination and lowest errors terms. The literature 

study has clarified that the ensembled trees are performing well when a training set contains 

many correlated variables. The training set of this research, does indeed contain mutually 

dependent predictors such as autoregressive and meteorological features, see section 4.2.2. 

The literature is therefore in line with the empirical test results. A more in-depth review of 

ensemble tree based models, and their origin, will be given in the next section of this report. 
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3.2.2 Regression tree 

Since the ensembled trees are derivatives of the regression tree a sort explanation of the 

regression tree will be given first. A regression tree consists of branches nodes and leaves (or 

terminal nodes) created by a series of splitting rules starting at the top of the tree (James, 

Witten, & Hastie, 2017) .  

The basic principle of regression trees will be explained by means of Figure 3, which shows an 

example of a single regression tree with a depth of three.  

 

Figure 3 Example regression tree 

In this example, a households’ electricity demand for a certain hour is predicted based on the 

temperature on that particular hour. The top node splits the data for which the temperature 

is equal or smaller than 15.85 degrees Celsius to the left branch, and data for which the 

temperature is larger than 15.85 degrees Celsius to the right branch. These first regions are 

split ones more, so that four regions are created, see Figure 3, with each a predicted amount 

of electricity used: 

𝑅1 = {𝑋|𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ≤ 7.95},        �̂�𝑅1
= 0.77𝑘𝑊ℎ 

𝑅2 = {𝑋|𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ≤ 15.85, 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 7.95},   �̂�𝑅2
= −0.14𝑘𝑊ℎ 

𝑅3 = {𝑋|𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 15.85, 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 < 19.65},  �̂�𝑅3
= −0.96𝑘𝑊ℎ 

𝑅4 = {𝑋|𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 19.65},      �̂�𝑅4
= −2.18𝑘𝑊ℎ 

The tree keeps building until a stopping point is reached determined by a stopping rule. In this 

case the stopping rule is a max dept of 2, the data is split twice. The prediction value for all 

the observations within a region is equal to the mean of the response variable of the training 

data in that region. Defining the size of the regions 𝑅1 … 𝑅𝐽 is based on minimizing the residual 

sum of squares (RSS), at the point of splitting of the total tree. The RSS is defined as (James, 

Witten, & Hastie, 2017): 
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𝑅𝑆𝑆𝑗 =  𝑒1
2 +  𝑒2

2 + ⋯ +  𝑒𝑛
2  (5) 

Equation 5: Residual sum of squares. 

Here 𝑒𝑖 is the error of a prediction, this can be described as the difference between the 

measured value and the predicted value, defined as: 

𝑒𝑖 = 𝑦𝑖 − �̂�𝑖 (6) 
Equation 6: Error of prediction. 

Here, 𝑦𝑖 is the observed value of the i-th sample and �̂�𝑖 is the predicted value of the i-th sample. 

Total minimization formula can be described as (James, Witten, & Hastie, 2017):  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ (𝑦𝑖 − �̂�𝑅𝑗
)

2

𝑖∈𝑅𝑗

𝐽

𝑗=1

 (7) 

Equation 7: Regression tree objective 

Where, �̂�𝑅𝑗
 is the mean value of the dependent variable in the j-th region.  

The algorithm which solves Equation 7,  consists of two steps which create the regression tree 

(James, Witten, & Hastie, 2017): 

(I) The predictor space is divided into J distinct and non-overlapping regions.  

(II) For every value that falls in a particular region, the same prediction is made. This 

prediction is the mean of the dependent variable for the training observations in that 

region.  

3.2.3 Random Forest 

In the previously described example, only one independent variable is used and only four 

regions are constructed. Regression trees where vast amount of data is used to train, will have 

hundreds of regions and use multiple independent variables. When problems become more 

complex, with more independent variables and non-linear relationships, a single tree will not 

predict accurate (James, Witten, & Hastie, 2017).  

Random forest is an ensemble learning method, consisting of a collection of regression trees. 

It is a homogeneous ensemble method since the model uses the same algorithm to create its 

base models, in this case regression trees. Random forests consist of multiple trees, where the 

prediction value is an averages of all the constructed trees. However now that there are 

multiple predictors, a rule must be defined to select the predictors for the splitting regions. In 

each tree, every time a split in a tree is created, a random sample of m predictors is chosen as 

split candidates from the full set of p predictors. So only a part of the predictors is considered 

each node. The goal of this approach is the decorrelation of the individual trees. Training sets 

often contain one, or a few, strong predictors, along with a number of moderately predictors.  

When multiple trees are constructed based on the strength of the predictors, the trees will 

look very much alike. The predictions of these trees will therefore be highly correlated. 

Averaging many highly correlated quantities will not reduce the variance as much as averaging 

many uncorrelated quantities. So creating multiple, comparable trees, will not reduce the 
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variance over a single tree. Therefore, random trees try to create uncorrelated predictions by 

randomly choosing predictors at each node of each tree.  By only using a subset of the 

predictors, the strong predictor will in some trees not even be considered and the other 

predictors have more influence. The average of the predicted values will be less variable and 

hence more reliable. Using this random forest with a small value of m will typically be helpful 

if a training set has many correlated predictors (James, Witten, & Hastie, 2017). The process 

of a random forest is visualized in Figure 4. 

 

Figure 4 Random forest process (Wang, Wang, Zeng, Srinivasan, & Ahrentzen, 2018) 

To measure the impact of each variable on the overall prediction performance, data 

permutation is used. By calculating in- or decrease of prediction accuracy resulting from 

randomly permuting the values of a variable, the importance of a variable can be determined. 

The larger the difference in prediction accuracy, the more the important of the variable, the 

smaller the difference the lesser the importance of a variable is (Wang, Wang, Zeng, 

Srinivasan, & Ahrentzen, 2018). 
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3.2.3.1 Parameters  

The prediction model is executed with the python module Scikit-learn. Scikit-learn is an 

integrated Python module with a wide range of state-of-the-art machine learning algorithms 

for medium-scaled supervised and unsupervised problems. This package is, like Pandas and 

Numpy, also open source and encouraged to use both for scientific and commercial purposes 

(Pedregosa, et al., 2011).  This program is chosen since it allows more flexibility in the fine 

tuning of parameter setting. With regression learner app from Matlab, used for the model 

selection in 3.2.1, only a few parameters, minimum leaf size and number of learners, can be 

changed. Where the Scikit-learn random forest regressor has much more possibilities in terms 

of parameter settings, see Table 4  (Scikit-learn, 2019). 

Table 4 Prediction model parameters 

Parameter Description Default setting 

n_estimators The number of trees in the random forest.  100 
criterion The function to measure the quality of a split. ‘mse’ 
max_depth The maximum depth of the tree.  ‘None’ 
min_samples_split The minimum number of samples required 

to split an internal node. 
2 

min_samples_leaf The minimum number of samples required 
to be at a leaf node. 

1 

min_weight_fraction_leaf The minimum weighted fraction of the sum 
total of weights (of all the input samples) 
required to be at a leaf node. 

0 

max_features The number of features to consider when 
looking for the best split.  

‘auto’[1] 

max_leaf_nodes Grow trees with max_leaf_nodes in best-
first fashion. If None then unlimited number 
of leaf nodes. 

‘None’ 

min_impurity_decrease A node will be split if this split induces a 
decrease of the impurity greater than or 
equal to this value. 

0 

bootstrap Threshold for early stopping in tree growth. 
A node will split if its impurity is above the 
threshold, otherwise it is a leaf. 

1e-7 

[1]If auto, than max_features=n_features 

 (Scikit-learn, 2019) 
 

Besides the model specific hyperparameters given in Table 4. There are also some parameters 

regarding the hardware usage such as, n_jobs, which indicates the number of jobs to run 

parallel, which is limited by the number of processors used (Scikit-learn, 2019). For these 

parameters the default settings are used, they will not be covered or explained further in this 

research.  
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3.2.3.2 Hyperparameter tuning 

To optimize the hyperparameter settings, a model selection tool from Scikit-learn, called 

‘RandomizedSearchCV’, is used. This tool enables running many different settings at ones and 

gives the parameter settings that have the best results. The randomized search tool creates a 

table with inputs for each predictor and runs all possible combinations of parameters on a 

threefold cross validation.  

Table 5 Hyperparameter tuning input 

Parameter Inputs options 

n_estimators Start=200, stop=400[1] 5 
max_features ‘auto’, ‘None’ 2 
max_depth 100, 120, 140, ‘None’ 4 
min_samples_split 2, 3, 5, 10 4 
min_samples_leaf 2, 3, 4 3 
bootstrap ‘True’, ‘False’ 2 

Total combinations  960 

cross validation 3 3 

Total runs   2880 
[1]Start and stop indicate boundaries of the range where the options are distributed over  

 
For all the parameters, not included in the optimisation model, the default settings are used. 
The exact coding and output of this optimization step can be found in Appendix V – 
Hyperparameter tuning. The combination with the best area under curve (AUC) score is 
considered as the best estimator. The confidence interval for AUC indicates the uncertainty 
for the prediction (DeLong, DeLong, & Clarke-Pearson, 1988). This optimization step has result 
in the following parameter settings, see  
Table 6. These settings will be used for all the validations. The optimization of parameters is a 
one-time effort in this process.  
 

Table 6 Result parameter tuning  

Parameter Inputs 

n_estimators 350 

max_features ‘None’ 
max_depth 120 
min_samples_split 3 
min_samples_leaf 4 
bootstrap ‘True’ 
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3.2.4 performance of the prediction model  

There are different manners to evaluate the quality of fit of a prediction model to a set of 
observed data. One of them is the coefficient of determination (R2), see Equation 8 (Fumo & 
Biswas, 2015): 

𝑅2 = 1 −  
∑(𝑦𝑖 − �̂�

𝑖
)

2

∑(𝑦𝑖 − �̅�
𝑖
)

2 (8) 

Equation 8: Coefficient of determination. 

Here, �̅� is the mean of the dependent variable defined as: 

�̅� =
1

𝑛
∑ 𝑦𝑖

𝑛−1

𝑖=0

 (9) 

Equation 9: Mean of dependent variable. 

Where 𝑦𝑖 is the observed value of the response variable of the i-th observation. 𝑦�̂� is the 

predicted value of the i-th sample. The terms ∑(𝑦𝑖 − 𝑦�̂�)
2
 and ∑(𝑦𝑖 − 𝑦�̅�)

2, in Equation 8, are 
respectively named; sum of squared errors and  total sum of squared errors. The value of the 
coefficient of determination varies between 0 and 1 (0 and 100 percent). This percentage 
indicates how much variability in the dependent variable, is accounted for by the independent 
variables. Many software packages have a built in R2 calculation method. It is not necessarily 
true that a model with a high R2 value fits the data well. Specifically for multi linear regression 
the coefficient of determination is adjusted and expressed as follow, see Equation 9: 

𝑅𝑎𝑑𝑗
2 = 1 − (1 − 𝑅2)

𝑛 − 1

𝑛 − 𝑝 − 1
 (10) 

Equation 10: Adjusted coefficient of determination. 

Here, n is the number of observations and p is the number of features, predictive variables.  

Another performance indicator is the mean absolute error (MAE). It can be calculated to 
evaluate the quality of the model, the MAE is expressed in Equation 11. 
 

𝑀𝐴𝐸 =  
∑ 𝑦𝑖 − 𝑦�̂�

𝑛
𝑖=1

𝑛
 (11) 

Equation 11: Mean absolute error. 

Here, 𝑦𝑖 is the observed or measured data and 𝑦�̂� is the predicted data generated by the 

prediction model. n represents the total number of observations. The MAE has a value 

between 0 and 1, where 0 is a perfect fit.  

The mean squared error (MSE) calculates a risk metric corresponding to the expected value of 

the squared error, see Equation 12: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛−1

𝑖=0

 (12) 

Equation 12: Mean squared error. 

Here, 𝑦�̂� is, again, the predicted value of the i-th sample and 𝑦𝑖 is the corresponding true value, 

then the MSE is estimated over n number of observations. 
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Another parameter that tells something about the quality of fit of the model is the root mean 
square error (RMSE), which is a measure of the scatter in the data around the model. The 
equation of RMSE for multi linear regression is written in Equation 13: 

𝑅𝑀𝑆𝐸 =  √∑(𝑦𝑖 − �̂�
𝑖
)

2

𝑛
=  √𝑀𝑆𝐸 (13) 

Equation 13: Root mean squared error. 

Since the models will predict clusters of dwellings with a variable number of houses, the error 

terms will have different ranges, due to the different cluster sizes.  

To compare the error terms of the different models the cumulative variation of root mean 

squared error (cv-RMSE) is used, this is the normalized RMSE. Normalisation is done by 

dividing the error term by the mean value of the particular observations of the cluster.  

𝑐𝑣 − 𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

�̅�
 (14) 

Equation 14: Cumulative Variation of root mean square error. 
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3.3 Operating system 

3.3.1 Framework for operating system 

For the proposed operating system, a framework is of some necessary conditions and 

requirements is drawn up. Without these conditions, the operating system cannot be 

applicable. Firstly, a computer system must be available which has access to all real time smart 

meter data of the neighbourhood and meteorological forecast for one day ahead. The 

computer must be able to store and pre-process the data and execute the clustering algorithm 

to create clusters, as well as execute the prediction algorithm to run the prediction. Further, 

this computer must, be able to operate all the switches in the electrical circuit of the 

neighbourhood.  This computer system is the ‘core’ of the operation. Another requirement is 

that all houses are individually connected on the LV-grid, to the ESS and to the other houses. 

So that they can be connected and disconnected to the LV-grid circuit, ESS-circuit or another 

cluster, in the appropriate conditions.   

 

3.3.2 Proposed circuit 

A schematic overview of the electric circuit of the neighbourhood is given in Figure 5.  

MV-grid

Storage system

LV-grid

Transformer MV 
to LV-grid

Cluster 0 Cluster 1 Cluster 2 Cluster 3

 

Figure 5 Schematic view of electrical circuit neighbourhood 
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In Figure 5 the houses are not pictured individually, but as clusters. In the circuit, each cluster 

is schematized as a variable resistor, representing the energy demanding state, and a solar 

station, which can provide electricity to the circuit when production exceeds demand. The 

clusters are connected to two switches, one for connecting to the LV-grid, and one for 

connecting to the ESS. The clusters can either be connected to the LV-grid, connected to the 

storage system, or completely disconnected. For example, in periods where enough solar 

energy is produced to provide the demanded electricity, or even more, to the cluster, it can 

be switched off from the LV-grid, and only connect to the storage system, so that it gets 

charged. 

In cases where direct sharing is possible, the switches are able to create connections between 

them. Figure 6 highlights the subsystem of interconnected clusters to clarify the principle of 

the direct sharing circuits. These are two-way connections, electricity is able to go towards, 

and away from each cluster.  This bidirectional connections breaks down the border between 

electricity generation and consumption, which is an important characteristic of the smart grid 

(Ryu, Noh, & Kim, 2016). 

 

MV-grid

Storage system

LV-grid

Transformer MV 
to LV-grid

Cluster 0 Cluster 1 Cluster 2 Cluster 3

 

Figure 6 Electrical circuit for direct sharing 

  



Machine learning approach to predict the energy sharing potential in a neighbourhood  V.B.C. (Vince) Bergkamp 

59 

 

3.3.3 Operating rules 

Together with the set framework and the proposed circuit, the following rules should be 

executed. Cluster 0 is used as example. Similar conditions and rules are applicable for the 

other clusters as well, see Table 7. 

Table 7 Operating rules 

 Conditions Operation rules 

1. If Cluster0 has positive demand, and Cluster1 and 
Cluster2 and Cluster3 have positive demand, and  
ESS has no capacity[1]; execute rule 1, else; check 
condition 2. 

Use gird power. 

2. If Cluster0 has positive demand, and Cluster1 and 
Cluster2 and Cluster3 have positive demand, and  
ESS has capacity; execute rule 2, else; check 
condition 3. 

Use ESS power. 

3. If Cluster0 has positive demand, and Cluster1 and/or 
Cluster2 and/or Cluster3 have negative demand; 
execute rule 3, else; check condition 4. 

Use surplus electricity from 
other cluster. 

4. If Cluster0 has negative demand, and Cluster 1 
and/or Cluster2 and/or Cluster3 has/have positive 
demand; execute rule 4, else; check condition 5. 

Share surplus of electricity to 
demanding cluster(s). 

5. If negative demand is larger than accumulated 
positive demand in other clusters; execute rule 5, 
else; check condition 6. 

Charge ESS with excess 
electricity. 

6. If Cluster0 has negative demand, and Cluster1 and 
Cluster2 and Cluster3 have negative demand,  and 
ECC does have charging capacity left; execute rule 6, 
else; check condition 7. 

Charge ESS with excess 
electricity. 

7. If Cluster0 has negative demand, and Cluster1 and 
Cluster2 and Cluster3 have negative demand,  and 
ECC does not have charging capacity left; execute 
rule7, else; check condition 1. 

Send excess back to grid/ sell 
in demand response 
market/long -term storage. 

[1]Substantially charged so, that it can provide the cluster with electricity.  

 

These rules cover the main circumstances which can take place in the neighbourhood. There 

are many combinations possible for the exact status of each cluster. For example the surplus 

electricity, mentioned in operation rule 3, can come from any cluster which has a surplus in a 

specific point in time.  

The objective is to create an operation schedule based on the predicted values of electricity 

demand in the different clusters. The operation schedule consists of a table with hourly 

operation commands, based on the condition rules in Table 7, for the operating system. Please 

note that the applicability of such schedule is very dependent on the prediction accuracy. In 

cases where the prediction models conditions deviate from the actual state of the 

neighbourhood, the operating rules might not be suitable.  
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Rule number-7 in Table 7, suggests to use excess electricity for long-term storage, when there 

is negative demand in the neighbourhood and the ESS is fully charged. Excess energy 

generated in summer and spring can be stored to consume during the winter and autumn 

when demand is higher. Li and Chan (2017) have summed up widely recognized energy 

storage technologies, besides ESS (Li & Chan, 2017):  

- Thermal energy storage;  

- Electrical and mechanical energy storage using flywheels; 

- Pumped hydroelectric energy storage relying on reservoirs; 

- Compressed air energy storage; 

- Electrical energy storage using a combination of electrolysers and hydrogen fuel cells.  

Exact application and technology of the long-term energy storage is not further considered in 

this study.  
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4. Data 
 

The upcoming of smart meter data enables a closer look into the energy demand patterns of 

individuals, and possibly reveals possibilities in improving energy self-sufficiency. Smart meter 

data is often considered as privacy sensitive, therefore, not many studies have been able to 

use such detailed energy consumption data of a large sample of households. Since this 

research is completely built around a provided dataset, it is appropriate to assign a chapter to 

this data. In this chapter, the origin, source and content of the data  will be described. Also an 

in-depth overview of the data pre-processing and feature selection will be given.  
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4.1 Data description and analysis 
The data used in this research is provided by Royal BAM group. The renovated houses are 

located in the municipality of Soest, a village west of Amersfoort in the province of Utrecht. 

The data is considered as privacy sensitive, therefore no exact address information of the 

dwellings nor information about the housing corporation is given. No sociodemographic 

information or time schedules of residents is provided for this same reason.  

The provided dataset consists of comma-separated values (CSV) files, with data of households’ 

energy usage for every 15 minutes of the past two years (2016, 2017). The data is collected 

from renovated houses of a social housing corporation. The houses have living surfaces of 85 

to 120 square meters, this is not known per dwelling. All houses have high quality insulation 

and new windows applied during the renovation. Further, the dwellings are not connected 

with natural gas and contain PV panels and HPs. More exact specifications, given by the 

provider of the dataset, are shown in Table 8. 

Table 8 Technical specifications dwellings 

Specification Value 

Living surface:                            85-110m2 

RC-score roof:                            6 

RC-score walls:                           3.5 

U-value windows:                   1.1 

Hot water buffer:                      150L 

Heat Pump power:                 1.2kW (SPF 3.9) 

PV installation capacity:            5-8kW peak 

 

  



Machine learning approach to predict the energy sharing potential in a neighbourhood  V.B.C. (Vince) Bergkamp 

63 

 

The dataset contains 13 variables,  divided over; electricity consumption variables, electricity 

production variables, heat pump variables and boiler variables, each measured every 15 

minutes, see Table 9. 

Table 9 Variables description of provided dataset 

Variable Description 

Time stamp 15-minute intervals from 2016-01-
1T00:00:00+01:00Amsterdam   to  
2018-12-31T22:00:00+01:00Amsterdam 

Consumed high Consumed electricity on high tariff hours in kWh 
Consumed low Consumed electricity on low tariff hours in kWh 
Solar inverter produced Produced solar electricity 
Produced solar high Produced and fed back electricity on high tariff hours 

in kWh 
Produced solar low Produced and fed back electricity on low tariff hours 

in kWh 
Heat pump consumed Consumed electricity by the heat pump in kWh 
Heat pump set point Temperature set point in C˚ of the heat pump 
Heat pump room temp Actual room temperature in C˚ 
Heat pump space heating delivered Amount of heating delivered by heat pump in GJ 
Boiler hot tap water consumed Volume of consumed hot tap water in m3 
Boiler set point temperature tap water Set point temperature of boiler in C˚ 
Boiler supply temperature Temperature of hot tap water when consumed in C˚ 

 

In many of the CSV-files, the columns regarding boiler set point temperature, actual boiler 

temperature and space heating delivered, is completely empty. These variables are taken out 

of the datasets entirely for consistency purposes, since it is not desirable to have differences 

in the number of variables in the dataset. The variables regarding boiler temperatures will not 

be found anywhere further in the research. 

The households use a dynamic cost pricing for their electricity consumption. In the daytime 

period, from 06:30 in the morning to 22:30 in the evening, the high tariff is applicable. The 

low tariff is applicable in the night time, from 22:30 in the evening to 06:30 in the morning. 

This could be used to optimize the operation system of the ESS. This research will however 

not further analyse any opportunities regarding dynamic pricing.  

4.2 Feature engineering 
The data pre-processing is done in Python (PFS, 2019). In the data cleaning process two 

modules are used, which enable fast and efficient data preparation in the Python 

programming language; Pandas and NumPy. Pandas is a Python data analysis library (Pandas, 

2019).  Numpy is a Python module for scientific computing with, among many other things, 

useful linear algebra and random number capabilities (NUMFOCUS, 2019). Another used 

panda module is Matplotlib, which is an open source plotting library (Hunter, Dale, Firing, 

Droettboom, & team, 2019). Matplotlib will be used to visualize pre-processed data and 

results.   
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4.2.1 Prediction variable 

The goal is to predict the total demand these houses have on the electricity grid, and improve 

the energy self-sufficiency by sharing between houses, or clusters of houses. The total demand 

on the grid computed by summing the consumption variables ‘Slimme Meter p1 consumed 

kWh high’,’ Slimme Meter p1 consumed kWh low and ‘Heat pump consumed kWh’, and 

subtracting the total produced electricity from the PV system ‘Solar Inverter kWh produced’. 

This new variable is called ‘grid_consumption’ and will be the response variable. This variable 

contains both positive, when the houses are demanding electricity and negative values, when 

they have a surplus from electricity generated by the PV panels.  

In total 38 predictive features are created, divided over; autoregressive variables, categorical 

time-related variables and meteorological variables. 

4.2.2 Auto regressive features 

Features based on historical data are used to improve the model accuracy. In this case total 

grid consumption will be used to create the autoregressive features. In total eight 

autoregressive features are created, see Table 10. 

Table 10 Autoregressive features 

1.  tot_gridconsumed ts-1day 5. tot_gridconsumed ts-5days 

2.  tot_gridconsumed ts-2days 6. tot_gridconsumed ts-6days 
3.  tot_gridconsumed ts-3days 7. tot_gridconsumed ts-7days 
4.  tot_gridconsumed ts-4days 8. -tot_gridconsumed ts-14days 

   

These features can be made based on the ‘tot_grid_consumed’ variable by means of the  

Pandas function ‘shift()’ function. This shifts the index by the desired number of periods, 

where each observation is a period. The ‘tot_grid_consumed’ variable is shifted by the number 

of observations to reach previous day, or days. For example, to reach the previous day the 

data must be shifted by 96 observations (24 hours has 96 observations of 15 min). This means 

that these autoregressive variables lack data in the first rows, since there is no previous data 

for the first day of the dataset. For  ‘tot_gridconsumed ts-14days’ this means that the first 

1344 observations are not present.  

4.2.3 Categorical features  

It is recommended by Mocanu et al. (2016) that adding extra information concerning the time, 

such as day and month would improve their model (Mocanu, Nguyen, Gibescu, & Kling, 2016). 

To do this, four features are added to the dataset, ’part of the day’, ‘weekday’, ’month’ and 

‘season’. The Pandas type ‘DateTime’ recognizes the weekdays (Monday – Sunday) and 

months (January – December) based on the date and time. Here, two columns are added, one 

with a label for the weekday and one with a label for month. The part of day variable is created 

manually by adding new column in the dataset with the label ‘Morning’ for daytime intervals 

6:00 – 12:00, ‘Afternoon’ for daytime interval 12:00-18:00, ‘Evening’ for daytime interval 

18:000 -24:00, and ‘Night’ for daytime interval 24:00-6:00. The variable ‘season’ is created 

based the meteorological season designation; summer ‘June-July-August’, Autumn 
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‘September-October-November’, winter ’December-January-February ’ and Spring ‘March-

April-May’, according to the KNMI (KNMI, 2019). 

For all the previously described categorical features, dummy-features are created. This allows 

the model to recognize these features as a categorical type. To do this the Pandas function 

which creates dummy variables. This transforms the designated features to dummy features. 

For example, ‘part of the day’ is split into four features, morning, afternoon, evening and night, 

where by means of zeros and ones it indicates if a particular datapoint belongs to which part 

of the day, see Figure 7. 

 

Figure 7 Example dummy variables 'part of day' 

In total 27 categorical features are created, see Table 11. 

Table 11 Categorical features 

Part of day and day of week Months Seasons 

1. part_of_day_Night 12. month_January 24. season_winter 
2. part_of_day_Evening 13. month_February 25. season_spring 
3. part_of_day_Morning 14. month_March 26. season_summer 
4. part_of_day_Afternoon 15. month_April  27. season_autumn 

5. weekday_Wednesday 16. month_May 
6. weekday_Tuesday 17. month_June 
7. weekday_Thursday 18. month_July 
8. weekday_Sunday 19. month_August 
9. weekday_Saturday 20. month_September 
10. weekday_Monday 21. month_October 
11. weekday_Friday 22. month_November 

 23. month_December 

 
Some of these variables, such as ‘season_winter’ and ‘month_January’ are correlated, this 
should be taken into account when picking a prediction model.  
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4.2.4 Meteorological features 

In addition to the features from the provided dataset, freely available meteorological data is 

gathered from the KNMI database. In many, energy demand prediction models, 

meteorological variables are used. The models tested by Fumo and Biwas (2015) contained 

meteorological data such as temperature, humidity and solar radiation (Fumo & Biswas, 

2015). Also, Mocanu et al. (2016) recommend using extra weather related information such 

as outside temperature would improve their model (Mocanu, Nguyen, Gibescu, & Kling, 2016). 

Weather station de Bilt, with a distance of approximately ten kilometres is the closest weather 

station from renovation project in Soest. The KNMI has freely available historical data which 

can be downloaded online by everyone. For the period from 31-12-2015 to 31-12-2018 the 

hourly measured data for temperature, relative humidity and dew point temperature is 

downloaded. Temperature is measured in 0.1 degrees Celsius, 1.50 meter above ground level. 

The relative humidity is measured in percentage, 1.50 meter above ground level. Dew point 

temperature is measured in 0.1 degrees Celsius, 1.50 meter above ground level. These three 

meteorological features are numerical and have the notation in the datasets as visible in Table 

12. 

Table 12 Meteorological features 

1. Temperature             

2. Humidity 
3. Dew point temp 

 
It should be taken into account, when selecting a prediction model, that the meteorological 

variables are correlated with each other (Fumo & Biswas, 2015). When applying linear models 

to this data, the highly correlated variables should be merged. Also, these meteorological 

variables are actually measured values. When predicting one day ahead, no certain 

information of these variables is available and only weather forecast data can be used.  

 

4.3 Data cleaning 

4.3.1 Unwanted strings removal 

The provided dataset contains unwanted strings in numerical columns, such as units, which 

makes it unable to operate the values. This is because of the fact that Python automatically 

recognizes the data as strings wen literal characters are involved, rather than the numerical 

values they represent. The first column of the dataset indicates the timestamp of the 

measured values, an example of this is ‘2016-01-01T01:30:00+01:00 Amsterdam’. The Pandas 

module is able to recognize time indication when it is displayed according to a certain 

standard. As can be seen the provided timestamp contains some unwanted information; ‘T’, 

‘+01:00’ and ‘Amsterdam’. These strings are removed and the timestamp column is converted 

to ‘pandas.DateTime’ so python recognizes it as a date time. This is necessary for feature 

engineering later where indicators will be made for date and time related features. 

Consumption and production data in the dataset are consequently displayed with units ‘kWh’, 

temperature related data contains ‘°C’, heating delivery data contains ‘GJ’ and hot water 
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usage contains ‘m3’. These units are removed and the values are transformed to type ‘float’ 

to create editable numerical values.  

4.3.2 Replacing outliers 

The provided data contains some unrealistic outliers, values a hundred times larger than the 

mean. The data is inspected visually to see where the threshold for a so called outlier should 

be. According to this visual inspection a value of 2kWh is determined to be the threshold for 

outliers, every value above will be replaced by a realistic replacement, its preceding value. 

This is done by means of a Numpy function ‘forward fill’. So instead of the outlier, the value 

preceding on that outlier, will occur twice. To test the whether this threshold of 2kWh is 

suitable, a random sample of 5 houses are tested. As an example, for house ID-5005, only 20 

values are above 2kWh, which is only 0.028% of the observations.  Since the amount of values 

above the threshold is so small, and the observations just below the threshold are high, the 

threshold value is considered realistic and suitable for this data. After filling the outliers, the 

pattern of electricity demand over time becomes more visible, see  Figure 8. 

  

Figure 8 Removing outliers, before and after 

 

4.3.3 Replacing missing values 

For the sake of the quality and reliability of the model, 70 houses with the least missing values 

are selected. These houses have on average 10.8% missing values in the ‘grid consumption’ 

variable, ranging from 5.2% to 29.8%. These missing values are firstly filled by the values of 

the previous day same time. This makes sense since there is a high correlation (correlation 

value of 0.84), between ‘tot_grid_consumption’ and ‘tot_gridconsumed ts-1day’. This first 

step does not completely fill all the missing values. On places where more than a full day of 

data is missing, missing values remain unfilled. The next step is to fill the missing values with 

the consumption values of the previous week same time. The correlation between 

‘tot_grid_consumption’ and ‘tot_gridconsumed ts-14days’ is lower than for the previous day 

but still notable with 0.59. Still not all missing values are filled, on places where more than a 

week of data is missing consecutive the missing values remain.  However, the number of left 
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over missing values are considered acceptable. After filling the missing values with the 

described two steps, the average amount decreased from 10.8% to 2.91%, ranging from 1.1% 

to 14.2%. This is considered acceptable. As a comparison, the study of Robinson et al. (2017) 

removes samples with more than 25% missing values (Robinson, et al., 2017). The complete 

overview of missing values can be seen in Appendix I – Missing values. 

 

4.4 Clustering and prediction sets 
After going through the data pre-processing, a clustering set is created. This set only contains 

the grid demand of each house, since the clustering will be solely based on the grid demand 

profiles of the houses. A visualisation of grid demand for two years of a single house is given 

in Figure 9. The grid demand is often, especially in the summer months, negative. This 

indicates that the PV system generates more electricity than used at that specific point in time. 

The total grid consumptions, which can be negative, is calculated according to Equation 15. 

tot_grid_consumpiton = Slimme Meter p1 consumed kWh high +  
 Slimme Meter p1 consumed kWh low + Heat pump consumed kWh  
             –    Solar Inverter Produced kWh 

(15) 

Equation 15: Total grid consumption 

 

Figure 9 Grid demand 2016-2017 for example household 

It can be visually observed from Figure 9 that, currently, large quantities of electricity are fed 

back to the grid.  Managing this excess electricity by using a ESS could therefore increase the 

self-sufficiency of the dwellings.  
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For each individual household a prediction set is created, containing all the previously 

described features. The prediction set is made hourly and has a shape of 38x17544 with 

666,627 data points per prediction set. In total one clustering set and 70 prediction sets are 

generated.  

In this clustering set the rows represent an individual house, the columns contain the 

timestamps, see Figure 10. The clustering set consists of fifteen-minute interval data and has 

a shape of 70176x70,  which is 4,912,320 data points. From this data set is used to extract the 

two weeks preceding on the prediction day.   

 

Figure 10 Clustering set example 

  



Machine learning approach to predict the energy sharing potential in a neighbourhood  V.B.C. (Vince) Bergkamp 

70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page is intentionally left blank. 

  



Machine learning approach to predict the energy sharing potential in a neighbourhood  V.B.C. (Vince) Bergkamp 

71 

 

5. Results  
 

In the first part of this results chapter shows the overall results of the 10 validation days. The 

days represent both week- and weekend days and contain all four seasons. The second part 

of this chapter focuses on one validation day, May 19th 2017. The results and process to get 

to the results will be described and explained in detail. 

.  
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5.1 Overall results  
Figure 11 shows a visual representation of the complete process. This process has to be 

worked through for every prediction that is executed. 

Smart meter data

Time data

Meteorological data

Data type Data preprocessing

K-means clustering for two 
weeks of data Accumulate prediction sets 

according to clusters

Training data Prediction data

Train random forest model

Predict electricity 
demand

Predicted electricity demand

Determine direct sharing 
potential

Determine indirect sharing 
potential

Calculate excess electricity 
for long-term storage/

demand response

P
e

r 
h

o
u

r 

Operate ESS

 

Figure 11 Research methodology 

In total, 10 validation days have been selected throughout 2017, see Table 13. The validation 

days cover week and weekend days, are all in different months and cover all seasons.  

Table 13 Validation days 

VALIDATION CLUSTER WEEKS PREDICTION DAY # OF 
CLUSTERS 

1 20-01-2017 to 03-02-2017 04-02-2017 Saturday 2 

2 09-03-2017 to 22-03-2017 23-03-2017 Thursday 3 

3 06-04-2017 to 19-04-2017 20-04-2017 Thursday 4 

4 04-05-2017 to 18-05-2017 19-05-2017 Friday 4 

5 05-06-2017 to 18-06-2017 19-06-2017 Monday 3 

6 09-07-2017 to 22-07-2017 23-07-2017 Sunday 4 

7 01-08-2017 to 14-08-2017 15-08-2017 Tuesday 3 

8 09-09-2017 to 23-09-2017 24-09-2017 Sunday 4 

9 03-10-2017 to 16-10-2017 17-10-2017 Tuesday 3 

10 06-12-2017 to 19-12-2017 20-12-2017 Wednesday 3 
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As can be seen in Table 13, some validation days have less than four clusters. The k-means 

clustering technique is forced to create 4 cluster, which is in some cases, is not suitable for the 

actual patterns in the data. This can results in a cluster with only one or a few houses. In such 

cases, the cluster with the smallest number of houses, is added to the second smallest cluster, 

see Appendix III – Cluster distribution September 2017 for an example. This approach is used 

to keep the prediction accuracy of the clusters high.   

Table 14 shows, for all the validation days, the model accuracy indices. Some noteworthy 

observations can be made from these results.   

Table 14 Total validation results 

 
Validation 
nr. 

1 2 3 4 5 6 7 8 9 10 

 
Date February 

3rd 
March 
23rd 

April 
20th 

May  
19th 

June 19th July 23rd August 
15th 

September 
24th 

October 
16th 

December 
20th 

Cluster Weekday Saturday  Thursday  Thursday Friday  Monday Sunday Tuesday Sunday  Tuesday  Wednesday 

Cluster 
0 

R2 0.69 - 0.92 0.73 0.91 0.85 0.80 0.77 - 0.48 

R2-adjusted 0.68 - 0.92 0.73 0.91 0.85 0.80 0.77 - 0.47 

MAE 8.21 - 10.50 16.22 7.14 11.55 9.05 10.33 - 3.47 

MSE 107.93 - 173.19 524.61 127.27 274.46 161.37 218.06 - 18.07 

RMSE 10.39 - 13.16 22.90 11.28 16.57 12.70 14.77 - 4.25 

absolute 
mean 

27.90 - 40.39 41.55 33.53 35.39 23.14 25.29 - 28.89 

cv-RMSE 0.36 - 0.33 0.55 0.34 0.47 0.55 0.58 - 0.15 

Cluster 
1 

R2 - 0.94 0.90 0.77 0.94 0.76 0.85 0.83 0.89 0.26 

R2-adjusted - 0.94 0.90 0.77 0.94 0.76 0.85 0.83 0.89 0.25 

MAE - 8.51 7.47 7.71 6.05 5.88 8.56 4.18 3.39 3.32 

MSE - 120.87 93.60 107.17 66.30 79.66 131.33 40.99 19.46 19.06 

RMSE - 10.99 9.67 10.35 8.14 8.93 11.46 6.40 4.41 4.37 

absolute 
mean 

- 37.51 26.16 20.85 32.56 18.17 24.74 13.67 11.77 16.46 

cv-RMSE - 0.29 0.37 0.50 0.25 0.49 0.46 0.47 0.37 0.27 

Cluster 
2 

R2 078 0.89 0.92 0.75 - 0.87 0.86 0.87 0.41 0.48 

R2-adjusted 0.78 0.89 0.92 0.75 - 0.87 0.86 0.87 0.41 0.48 

MAE 8.54 10.86 7.33 9.58 - 5.24 4.05 8.17 7.84 4.33 

MSE 175.73 190.05 101.04 188.75 - 45.68 38.65 116.41 123.71 30.98 

RMSE 13.26 13.79 10.05 13.74 - 6.76 6.22 10.79 11.12 5.57 

absolute 
mean 

36.68 36.65 30.31 26.07 - 17.97 14.58 24.74 16.21 31.67 

cv-RMSE 0.36 0.38 0.33 0.53 - 0.38 0.43 0.44 0.69 0.18 

Cluster 
3 

R2 - 0.90 0.94 0.81 0.62 0.71 - - 0.79 - 

R2-adjusted - 0.90 0.94 0.81 0.62 0.71 - - 0.79 - 

MAE - 7.60 3.84 7.53 8.56 6.63 - - 4.29 - 

MSE - 98.82 28.41 101.94 181.60 103.37 - - 29.74 - 

RMSE - 9.94 5.33 10.10 13.48 10.17 - - 5.45 - 

absolute 
mean 

- 28.12 19.14 21.15 20.30 20.06 - - 9.43 - 

cv-RMSE - 0.35 0.28 0.48 0.66 0.51 - - 0.58 - 

All validation days are from 2017 
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The variance of the prediction accuracies from the different validation day is rather large. 
Multiple validations have R2 values of over 0.90 which is high, considering that this is a 
validation. An example of very good results is visible in Figure 12. As can be seen does the 
prediction line follow the same trend as the actual measured profiles. In the middle of the day, 
when excess electricity is at its peak, the prediction model shows less extreme shapes, 
especially in cluster 1 and 2.  This causes the errors, performance indices, to be rather high.  

 

Figure 12 Predicted and measured values validation number-3 
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On the other hand there are also validation runs where the R2 is below 0.50. The worst 
performing models are from validation number-10, December 20th, and cluster 2 of validation 
number-9, October 16th. As can be seen in Table 15, this latest mentioned cluster, consists of 
36 houses, which is large, compared to the other clusters. This cluster has also very high error 
terms, with a cv-RMSE of 0.69.   

A contradicting observation is made in validation number-10, where the error terms are very 

good, in fact the best of all validations. This, while the corresponding R2 of the validation is 

very low. Figure 13 shows the plots of the predicted and measured values of validation 

number-10 as an example. As can be seen in the plots, the values of the predicted and actual 

values are almost everywhere different. This explains the bad R2.  Why specifically this day in 

December is performing different, less accurate, from the other validation days is guessing. As 

earlier mentioned it probably is correlated with the weather conditions in winter which causes 

the poor performance, when looking at the R2.   

  

Figure 13 Predicted and measured values validation number-10 
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According to these validations, there is no indication that there is a difference in prediction 

accuracy between week days and weekend days. There is however a difference in accuracy 

when looking into seasons. The worst performing validations, validation 1, 9 and 10, all occur 

in autumn and winter. This indicates that the predicting accuracy is worse during autumn and 

winter and prediction accuracy improves in spring and summer. This could be correlated with 

the less consequent energy production by the PV-systems during these months. To statistically 

determine this hypothesis more validations should be executed, averaged and compared. 

Table 15 Number of learners per validation day 

Validation 
nr. 

1 2 3 4 5 6 7 8 9 10 

Date February 
3rd 

March 
23rd 

April 20th May  19th June 19th July 23rd August 
15th 

September 
24th 

October 
16th 

December 
20th 

Weekday Saturday  Thursday  Thursday Friday  Monday Sunday Tuesday Sunday  Tuesday  Wednesday 

Number 
of 

learners 
9577 10729 11401 12121 13561 14353 14953 15889 16393 17257 

Size 
Cluster 0 25 +2 (1) 25 24 23 25 23 24 (1) 31 

Size 
Cluster 1 (1) 27 16 11 24 16 27 16 +3 17 10 +1 

Size 
Cluster 2 43 23 18 19 (7) 10 16 +4 27 36 28 

Size 
Cluster 3 (1) 19 +1 11 16 16 +7 19 (4) (3) 16 +1 (1) 

Cluster size values between brackets are merged with second smallest cluster 

 

Further, from these validation days, it can be observed that the number of learners do not 
impact the model accuracy. There is a significant difference between the number of learners 
of each validation day, see Table 15. The number of learners is variable since, as mentioned 
earlier, the training set goes up until the validation data.  

Table 16 Total average results 

Validation 
nr. 

1 2 3 4 5 6 7 8 9 10 
Total 

average Date February 
3rd 

March 
23rd 

April 
20th 

May  
19th 

June 
19th 

July 
23rd 

August 
15th 

September 
24th 

October 
16th 

December 
20th 

Weekday Saturday  Thursday  Thursday Friday  Monday Sunday Tuesday Sunday  Tuesday  Wednesday 
 

Average 
R2 

0.73 0.91 0.92 0.77 0.82 0.80 0.84 0.82 0.70 0.40 0.77 

Average 
cv-RMSE 

0.36 0.34 0.33 0.51 0.42 0.46 0.50 0.50 0.55 0.20 0.41 

 

Overall the R2 score averages on 0.77, which proves the model is able to explain the majority 

of the data decently, but is not in a highly accurate manner.  The cv-RMSE tells how well the 

model fits the data. ASHRAE uses a cv-RMSE of ±0.30 is considered to be a well calibrated 

model and sufficiently close to physical reality for engineering purposes, when using hourly 

data (ASHRAE, 2002). As can be seen in Table 16 and Table 14, the range of ±30% is achieved 

in some of the validation runs. However, on average the cv-RMSE comes to be 41% which is 
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somewhat higher, and indicates that improvements are necessary for practical applications 

according to the standards of ASHRAE. The error terms MSE, MAE and RMSE are not taken 

into account in these average numbers since they cannot be used to compare. These terms 

are correlated with the absolute mean and the number of houses. Normalizing these values 

by dividing them by the number of houses of the corresponding cluster would still not give a 

comparable value since the grid consumption is very dependent on the weather conditions. 

In the winter and autumn the grid consumption is higher due to more heating and less 

electricity production form the PV-systems.  

Table 17 shows the comparison between the predicted values of the excess electricity and 

how they are distributed according to the operating rules described in 3.3.3. Also it shows the 

total grid demand for each validation day.  

Table 17 Validation results, measured versus predicted values 

 

It is assumed, that the ESS is completely discharged at the beginning of the day, at midnight. 

The ‘indirect sharing day’ rows, shows the amount of excess produced kWh which is stored in 

the ESS that can be consumed the same day. In all of the cases, the indirect sharing of 

electricity takes place late in the afternoon or in the evening, when PV-systems do not produce 

enough to cover the electricity demand of the clusters.  

  

 
Validation nr. 1 2 3 4 5 6 7 8 9 10 

 
Date February 

3rd 
March 
23rd 

April 
20th 

May  
19th 

June 
19th 

July 
23rd 

August 
15th 

September 
24th 

October 
16th 

December 
20th 

 
Weekday Saturday  Thursday  Thursday Friday  Monday Sunday Tuesday Sunday  Tuesday  Wednesday 

Measured 

Total excess 
production 

60.97 1581.41 1976.46 2297.73 1857.64 1375.77 905.46 920.20 397.75 0.00 

Direct sharing 0.07 0.00 2.43 5.91 2.56 0.00 0.00 12.29 1.72 0.00 

Indirect sharing 
day 

60.89 443.10 331.72 172.41 141.61 350.36 336.60 342.37 396.03 0.00 

Remaining excess 

production[1] 
0.00 1138.32 1642.30 2119.41 1713.47 1025.41 568.86 565.54 0.00 0.00 

Total grid 

demand[2] 
1453.35 873.32 805.02 270.61 215.78 663.11 545.51 563.34 583.45 1848.61 

Predicted 

Total excess 
production 

22.77 1109.33 1739.66 1594.07 2021.26 1438.39 805.27 815.35 395.56 0.00 

Direct sharing 5.27 5.09 0.00 0.79 1.00 0.00 9.22 10.81 14.15 0.00 

Indirect sharing 
day 

17.50 408.68 197.01 219.68 150.97 390.83 270.34 273.53 381.40 0.00 

Remaining excess 
production* 0.00 695.56 1542.66 1373.61 1869.30 1047.56 525.70 531.01 0.00 0.00 

Total grid 
demand** 

1737.72 833.18 719.40 360.59 240.6959 738.28 438.15 441.33 643.79 1706.69 

All values are in kWh 
[1]After sharing 

[2]Without taking into account direct or indirect sharing 
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The total values, total excess production, and total grid demand, of the actual and predicted 

values are very similar to each other. The values for indirect are also quite similar and can be 

used to determine the indirect sharing potential of the next day in order of magnitude. The 

comparison of the measured and predicted direct sharing on the contrary, is less similar and 

promise currently little practical application. 

The total excess production in seven of the ten validations is much higher than the total grid 

demand. This indicates that the neighbourhood, with sufficient battery capacity is in the 

majority of the year capable of being self-sufficient energy provision with sufficient battery 

capacity and even generates a surplus of electricity. To determine the storage size needed, to 

become completely self-sufficient, the total grid demand between ±19:00 until ±6:00 hour 

must be accumulated. This is the time period where the PV-systems do little to no production. 

In order of magnitude, this will be equal to the ‘total grid demand’ in Table 17. From May until 

October the neighbourhood can be self-sufficient with a storage system of 660kWh. This is 

equal to 9.43kWh per dwelling, which is large but not extreme considering battery packs for 

private individuals offered by companies, are in the range of 15kWh (Panasonic, 2019) (Tesla, 

2019).  

Even with such a large storage system the neighbourhood produces a vast amount of excess 

electricity, up to 1500kWh per day in June. The surplus of electricity generated in spring and 

summer could be used for long-term storage so that is can be used in the winter and autumn 

where the neighbourhood does need energy to improve the self-sufficiency even more.  Some 

suggestions for long term storage are described in 3.3.3. Currently compensation for feeding 

excess electricity, on top of the total grid demand, to the grid is roughly 50% of the electricity 

cost (SwitchExpert, 2019). With current electricity prices of around €0.20/kWh (Pricewise, 

2019) this means saving of €0.10 per kWh used from the long term storage. It is expected for 

the feed-in compensation to decrease rapidly in the near future, which makes storing excess 

electricity more attractive.  

 

5.2 Proof of concept  
In this proof of concept section, a single validation day is described in detail to show the 

applied methodology and the process of the used approach.  Validation number-4 is used 

since it has results reasonably close to the average.  

5.2.1 Data pre-processing 

The process starts with the collecting and preparation of smart meter data, time data and 

meteorological data. Smart meter data and meteorological data both come from different 

sources, being the smart meters in the houses and meteorological centre. Time data, such as 

indicators for weekday and season, can be extracted from the smart meter data, this is 

described in chapter four 4.2.3.  Two datasets have to be created, since the clustering model 

and the prediction model require different data formats, as described in 4.4. The clustering 

set only consists of the grid consumption per house. The prediction datasets contain all the 

prediction features.  
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5.2.2 Clustering Model 

After the data collection and pre-processing, clustering is performed. The houses are clustered 

based on the grid consumption data two weeks preceding the prediction day. In this example 

the clusters are made based on the grid consumption data of 4th of May to the 18th of May 

2017. The prediction will be done for May 19th 2017.  The training model will use data from 

January first 2016, until the 18th of May 2017. This means that the model has not seen any of 

the data that it will predict, which is necessary for a proper model validation. For these 

validations, it is assumed that the measured meteorological data is the weather forecast.  

The clustering, as described in 3.1, is executed with the Scikit-learn module, resulting in four 

clusters with a substantial number of houses, see Table 18.  

Table 18 Cluster distribution May 2017 

Cluster 0 Cluster 1 Cluster 2 Cluster 3 

grid_consumption_4776 grid_consumption_4775 grid_consumption_4687 grid_consumption_4696 

grid_consumption_4778 grid_consumption_4783 grid_consumption_4689 grid_consumption_4698 

grid_consumption_4780 grid_consumption_4791 grid_consumption_4692 grid_consumption_4701 

grid_consumption_4781 grid_consumption_4794 grid_consumption_4700 grid_consumption_4707 

grid_consumption_4788 grid_consumption_4796 grid_consumption_4703 grid_consumption_4715 

grid_consumption_4790 grid_consumption_4804 grid_consumption_4706 grid_consumption_4718 

grid_consumption_4793 grid_consumption_4805 grid_consumption_4714 grid_consumption_4735 

grid_consumption_4798 grid_consumption_5006 grid_consumption_4716 grid_consumption_4745 

grid_consumption_4800 grid_consumption_5013 grid_consumption_4731 grid_consumption_4747 

grid_consumption_4807 grid_consumption_5014 grid_consumption_4732 grid_consumption_4752 

grid_consumption_4808 grid_consumption_5015 grid_consumption_4733 grid_consumption_4754 

grid_consumption_4809 Total: 11 grid_consumption_4734 grid_consumption_4757 

grid_consumption_4818  grid_consumption_4738 grid_consumption_4758 

grid_consumption_4820  grid_consumption_4739 grid_consumption_4759 

grid_consumption_4821  grid_consumption_4741 grid_consumption_4760 

grid_consumption_4824  grid_consumption_4742 grid_consumption_7056 

grid_consumption_4827  grid_consumption_4746 Total: 16 

grid_consumption_4829  grid_consumption_4756  
grid_consumption_4997  grid_consumption_5010  
grid_consumption_5005  Total: 19  
grid_consumption_5008    
grid_consumption_5009    
grid_consumption_5012    
grid_consumption_5016    

Total: 24    
 

For each cluster, the individual consumption profiles are accumulated. The accumulated sets 

are used in the prediction model.  
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5.2.3 Prediction model  

As described in 3.2.3, a random forest regressor, an ensembled learning machine from Scikit-
learn module, is used for the prediction model. The exact parameter settings of this model, 
and how these are established, are described in 3.2.3.2, Table 6. 

 

5.2.3.1 Validation results  

After preparing the data, clustering the houses and optimizing the parameters, the actual 

prediction takes place. For each cluster the random forest regressor algorithm is used to 

predict the validation days. Each validation run uses two datasets, a training set and a test set. 

The training testing set contains, as mentioned earlier, all the available data up until the 

validation day.  Therefore the number of learners, visible in the subscript of Table 19, differs 

per validation day. The test set consists of the 24 hours from the validation day. As can be 

seen in Table 19, the indicators for the model accuracy, described in 3.2.4, are calculated for 

each cluster.  

Table 19 Prediction accuracy per cluster May 19th 2019 

Prediction results Cluster 0 Cluster 1 Cluster 2 Cluster 3 

Cluster size  24 11 19 16 

R2 0.73 0.77 0.75 0.81 
R2-adjusted 0.73 0.77 0.75 0.81 
MAE 16.22 7.71 9.58 7.53 
MSE 524.61 107.17 188.75 101.94 
RMSE 22.90 10.35 13.74 10.10 
absolute mean[1] 41.55 20.85 26.07 21.15 
cv-RMSE 0.55 0.50 0.53 0.48 

number of learners = 12121 
number of features = 38 

[1]Absolute mean from the measured values of the prediction day. 

 

The MAE, MSE and RMSE are all correlated with the absolute mean value, which in general 

means that higher the absolute mean is, higher the indices are. The absolute mean is again 

correlated with the number of houses, since more houses generally consume more electricity. 

The R2, R2 – adjusted and the cv-RMSE are normalized and can be used to compare the 

accuracy of different prediction runs or validation days. It was expected that the cluster with 

the most houses and the largest absolute mean value would have the best prediction results, 

since this cluster has most likely the smoothest grid demand profile. However, these results 

show that the best performing cluster does not have the highest number of houses nor 

absolute mean. This indicates that clustering the houses based on grid demand profiles does 

add value for the prediction accuracy.  

When looking at the R2 and the cv-RMSE, of this validation day, there is little variance between 

the clusters. This is also true for the MAE, MSE and the RMSE, when taking the corresponding 

absolute mean into account. This is an indicator that the robustness of the model is decent. 
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Even though the cluster sizes, and thus the values, are very different, the model operates 

similar based on these indices.  

In Figure 14 a plot of the predicted and actual values is shown. This plot shows that the 

predicted grid consumption line follows the same trend as the measured grid consumption 

line. However, there are some large discrepancies between the two lines, especially  in the 

middle of the graph, between 9 in the morning and 2 in the afternoon, which results in the 

error term values given in Table 19.  

The plots of the other three clusters can be found in Appendix VI- Prediction and measured 

values plots. It is clearly visible that the prediction line follows the same trend as the actual 

demand profile. Although the trends are similar, the values of the predicted and measured 

profiles differ at almost every point. 

 

Figure 14 Prediction and measured values plot 

This plot, together with the plots in Appendix VI – Prediction and measured values plots, 

show that the prediction model has a tendency to generate lower grid demand values. This 

is remarkable, yet the specific cause for this behaviour is uncertain.   
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The features used in the prediction model are described in 4.2. Table 20 show the five most 

important prediction features per clusters.  

Table 20 Top-5 feature importance validation day 4 

Cluster 0 Cluster 1 Cluster 2 Cluster 3 

Feature name Importance Feature name Importance Feature name Importance Feature name Importanc
e 

tot_gridconsu
med ts-1day 

0.5548 
tot_gridconsume
d ts-1day 

0.5698 
tot_gridconsu
med ts-1day 

0.5357 
tot_gridconsum
ed ts-1day 

0.4561 

Humidity 0.1059 Humidity 0.1069 Humidity 0.1222 
tot_gridconsum
ed ts-3days 

0.1701 

tot_gridconsu
med ts-2days 

0.1038 
tot_gridconsume
d ts-2days 

0.0916 Temperature 0.1096 Humidity 0.1308 

tot_gridconsu
med ts-3days 

0.0521 Temperature 0.0396 
tot_gridconsu
med ts-3days 

0.0754 
tot_gridconsum
ed ts-2days 

0.0631 

Temperature 0.0341 
tot_gridconsume
d ts-3days 

0.0371 
tot_gridconsu
med ts-2days 

0.0423 Temperature 0.0613 

 

All four clusters have the same top-five prediction features, only the order is slightly different. 

The autoregressive feature, ‘tot_gridconsumed ts-1day’, is the most important feature for all 

the clusters in this validation example. This shows that the previous day’s consumption is a 

very strong predictor. It is remarkable that in cluster 3, the feature ‘tot_gridconsumed ts-

3days’ has a much stronger influence on the prediction accuracy than ‘tot_gridconsumed ts-

2days’, in contrary with the other three clusters. Besides the autoregressive features, the 

meteorological prediction features are important. Humidity and temperature are strong 

predictors in all clusters. The complete feature importance list for the prediction of 19th of 

May 2017, can be found in Appendix IV – Feature importance. The fact that the importance of 

the prediction features is different per cluster, proves that the clusters have different 

characteristics, and thus that the clustering is beneficial for the predicting accuracy.  
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5.2.4 Operating system 

Please take the assumptions regarding the electricity grid, described in 3.3, in mind. Now that 

the grid demand values are generated by the prediction model, the sharing potential can be 

determined. Table 21 shows the grid demand according to the prediction model, as well as 

the actual values, of May 19th 2017.  The goal of the operating system is to determine direct, 

and indirect sharing possibilities.  

Table 21 Predicted and measured values validation 

 
Cluster 

0 
Cluster 

1 
Cluster 

2 
Cluster 

3 
# Cluster 0 Cluster 

1 
Cluster 

2 
Cluster 3 # 

TS Predicted Measured 

2017-05-19 00:00:00 8.78 4.57 7.06 7.46 

(I) 

8.74 2.43 6.81 7.88 

(I) 
2017-05-19 01:00:00 9.50 4.48 8.37 8.10 6.81 2.45 7.18 6.49 

2017-05-19 02:00:00 9.40 5.31 8.80 6.88 7.15 4.98 6.40 8.56 

2017-05-19 03:00:00 8.40 4.61 8.58 6.85 6.32 2.68 8.76 4.56 

2017-05-19 04:00:00 8.68 3.02 4.61 6.66 -2.61 -2.29 -2.13 -0.99 

(III) 

2017-05-19 05:00:00[1] 0.01 -0.98 -0.33 0.77 (II) -17.81 -11.01 -13.91 -7.47 

2017-05-19 06:00:00 -21.70 -13.13 -3.68 -5.69 

(III) 

-43.77 -23.60 -29.41 -14.53 

2017-05-19 07:00:00 -38.31 -21.14 -29.45 -15.35 -53.31 -29.39 -34.69 -27.76 

2017-05-19 08:00:00 -44.72 -23.84 -33.05 -31.05 -65.93 -31.96 -34.43 -32.68 

2017-05-19 09:00:00 -55.37 -25.92 -42.33 -35.76 -37.41 -24.31 -40.34 -29.38 

2017-05-19 10:00:00 -32.26 -19.05 -15.23 -17.97 -76.51 -36.18 -48.68 -36.05 

2017-05-19 11:00:00 -43.18 -27.64 -37.21 -27.80 -120.60 -57.97 -67.22 -55.11 

2017-05-19 12:00:00 -81.00 -39.89 -42.83 -38.50 -109.02 -55.00 -66.08 -56.76 

2017-05-19 13:00:00 -85.30 -40.87 -48.57 -47.61 -111.25 -52.22 -63.49 -56.34 

2017-05-19 14:00:00 -69.53 -31.14 -39.75 -40.39 -96.44 -45.00 -59.12 -53.59 

2017-05-19 15:00:00 -55.85 -23.05 -38.45 -34.36 -70.98 -35.82 -28.56 -22.60 

2017-05-19 16:00:00 -40.84 -17.12 -26.41 -24.97 -54.60 -27.99 -40.99 -33.76 

2017-05-19 17:00:00 -26.52 -14.05 -18.88 -6.05 -39.63 -19.79 -17.15 -17.17 

2017-05-19 18:00:00 6.38 2.88 7.58 5.10 

(IV) 

-10.99 -6.63 3.79 2.12 (II) 

2017-05-19 19:00:00 11.67 4.51 15.40 9.84 7.23 5.12 11.65 5.18 

(IV) 

2017-05-19 20:00:00 14.13 5.51 14.79 8.86 15.45 8.19 14.24 7.60 

2017-05-19 21:00:00 14.32 5.47 12.40 8.43 16.66 4.49 9.63 8.55 

2017-05-19 22:00:00 11.67 4.78 13.53 7.75 8.62 7.51 5.93 5.61 

2017-05-19 23:00:00 11.38 4.44 10.76 8.08 9.34 3.42 5.10 6.98 

All values are in kWh 
[1]official sunrise on 19th of May 2017 on 5:40 in the morning (sunrise-and-sunset.com, 2019) 

 

It is assumed that the storage system is empty at the start of the day. The values of the 

prediction model and the measured data, show similar patterns. The day has four different 

sections, indicted by the roman numbers in Table 21.  The first indicator, number I, is a 

demanding stage of the neighbourhood. This is before sunrise, where the PV-systems don’t 

produce, electricity to cover the demand. Dependent on the status of the ESS either condition 

rule 1 or 2 should be executed, see 3.3.3. It would be preferable to have available stored 

electricity from previous’ day excess electricity, so condition rule 2 is applicable. 
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Number II, indicates a state of the neighbourhood where direct sharing is possible. Direct 

sharing possibilities occur when there is excess electricity generated by the PV-systems, in 

certain cluster(s), and demand in other. An example of this can be found in Table 21, in the 

prediction columns at 5:00 in the morning. Clusters 0 and 3 have demand for electricity while 

clusters 1 and 2 have excess. Another example can be found on 18:00 in the afternoon in the 

measured columns. Clusters 0 and 1 generate a surplus of electricity, and cluster 2 and 3 are 

in a demanding state. In these cases the electricity can be transferred directly between the 

clusters. Unfortunately, the direct sharing potential, generated by the prediction model does 

not occur on the same moment nor in the same quantity as the actual values demonstrate.  In 

this part condition rules 3 and 4 are applicable, dependent on the clusters.  

The third indicator, number III, indicates the period where excess electricity is generated. In 

all clusters the electricity consumption is larger than the consumption of electricity. This 

electricity can be transported to the storage system to be consumed later. Condition rule 

number 5 has to be applied for all clusters in this section of the day. 

Number IV indicates that the neighbourhood is, again, in a demanding state. However, this 

time the electricity that was previously generated can be consumed, this is referred to as 

indirect sharing. Excess electricity, which cannot be used immediately in the neighbourhood, 

is stored in a storage system. In the validation example, Table 21, this occurs in both the 

predicted and measured columns. The predicted values indicate excess electricity between 

5:00 in the morning until 17:00 in the afternoon. Accumulated this excess electricity comes to 

be 1594 kWh. After 17:00 in the afternoon, the neighbourhood is again in demanding state, 

where between 18:00 and midnight 219kWh is needed. This can easily be covered by the 

excess generated electricity of that day. The measured values show similar patterns however, 

in different quantities. The condition rule applicable in this part of the day is 2, using ESS 

power. 

As also stated in Table 21, the sunrise, the moment the sun becomes visible at the eastern 

horizon, on 19th of May 2017 occurs on 5:40 AM (sunrise-and-sunset.com, 2019). However, as 

can be seen in the measured data columns, the solar panels already start generating electricity 

in the hour 4:00 to 5:00 AM. Before the sun itself is visible at the horizon, its light can already 

be observed and, as the smart meter data shows, they generate electricity.  

Please note that efficiency loss due to transport through cables, and the storage is not taken 

into account in current results.  

As can be observed from the values in Table 21, the total grid demand of the neighbourhood 

is negative, which means that there is an excess of electricity. Figure 15 shows the distribution 

of the excess electricity for this validation day. The validation only covers the distribution of 

one day.  
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The surplus of generated electricity can be used in three possible ways, and should be 

prioritized in the following order.  

1. Direct sharing; it is desirable to, when possible, use the excess electricity for direct 

sharing first. This minimizes the loss from transporting, and reduces grid demand.  

2. Indirect sharing; if direct sharing is not possible, short term storing and to use later in 

the neighbourhood. This decreases the grid demand and increases self-sufficiency.  

3. Remaining excess. Two main possibilities for the remaining excess generated 

electricity. 

a. Trading; excess electricity can be traded in the demand response market.  

b. Long-term storage; the neighbourhood is generating a vast amount of excess 

electricity. The surplus is, in some cases, so large, that it is not realistic to store 

the remaining electricity, even of a single day, in an electrical storage systems, 

due to the high purchasing costs. Long-term storage in hydrogen, despite the 

low efficiency, could be an option.  

c. Send back to the grid. 

 

Figure 15 Total excess electricity production distribution 
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According to the prediction rules, suggested in 3.3.3, the following operating rules should be 

executed. Table 22 shows a more exact description of which clusters share electricity 

compared to Table 21. 

Table 22 Operation schedule validation May 19th 2017 

 
Cluster 0 Cluster 1 Cluster 2 Cluster 3 Operation 

commands TS Predicted 

2017-05-19 00:00:00 8.78 4.57 7.06 7.46 

Use grid 
power[1] 

 

2017-05-19 01:00:00 9.50 4.48 8.37 8.10 
2017-05-19 02:00:00 9.40 5.31 8.80 6.88 
2017-05-19 03:00:00 8.40 4.61 8.58 6.85 
2017-05-19 04:00:00 8.68 3.02 4.61 6.66 

2017-05-19 05:00:00 
Receive 0.01 

from C1 

0.01 to C0 
0.77 to C3 

0.20 charge 
ESS 

0.33 charge 
ESS 

Receive 0.77 
from C1 

 Operate per 
cluster 

2017-05-19 06:00:00 -21.70  -13.13  -3.68  -5.69  

Charge ESS[2] 

2017-05-19 07:00:00 -38.31 -21.14 -29.45 -15.35 

2017-05-19 08:00:00 -44.72 -23.84 -33.05 -31.05 

2017-05-19 09:00:00 -55.37 -25.92 -42.33 -35.76 

2017-05-19 10:00:00 -32.26 -19.05 -15.23 -17.97 

2017-05-19 11:00:00 -43.18 -27.64 -37.21 -27.80 

2017-05-19 12:00:00 -81.00 -39.89 -42.83 -38.50 

2017-05-19 13:00:00 -85.30 -40.87 -48.57 -47.61 

2017-05-19 14:00:00 -69.53 -31.14 -39.75 -40.39 

2017-05-19 15:00:00 -55.85 -23.05 -38.45 -34.36 

2017-05-19 16:00:00 -40.84 -17.12 -26.41 -24.97 

2017-05-19 17:00:00 -26.52 -14.05 -18.88 -6.05 

2017-05-19 18:00:00 6.38  2.88 7.58 5.10 

Use ESS power 

2017-05-19 19:00:00 11.67 4.51 15.40 9.84 

2017-05-19 20:00:00 14.13 5.51 14.79 8.86 

2017-05-19 21:00:00 14.32 5.47 12.40 8.43 

2017-05-19 22:00:00 11.67 4.78 13.53 7.75 

2017-05-19 23:00:00 11.38 4.44 10.76 8.08 

All values are in kWh 
[1]Assuming storage system is empty, otherwise ESS will be discharged first. 

[2]When ESS is fully charged, electricity will be put to long-term storage, or send back to the grid immediately. 

 

As also mentioned in the table above, the excess energy, after completely storing the ESS, 

could be stored for longer periods.  
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6. Conclusion and outlook  
 

This chapter forms the final part of this research. The research questions will be answered and 

the validity of results will be discussed. Also the limitations of this study will be addressed and 

some recommendations will be given for future research on energy demand prediction and 

determining sharing potential.  
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6.1 Conclusion 
The decentralization of the electricity grid, demands energy storage and smart energy 

distribution (Li & Chan, 2017). High penetration levels of intermittent energy sources, such as 

PV-systems and wind turbines, has increased the complexity of electricity demand forecasting 

(Lahouar & Slama, 2015). Smart metering has, however, given the opportunity to analyse the 

energy usage profiles of individual houses more thoroughly. In this study, smart metering data 

is analysed to expose opportunities for increasing self-sufficiency.   

In order to increase self-sufficiency it is necessary to use renewable generated electricity 

locally, this can be done by directly sharing excess electricity between clusters, and by storing 

excess electricity for later use. To achieve such sharing and storing system an approach is 

suggested which combines different algorithms to achieve day ahead hourly electricity  

demand profiles of a residential district.  

The novelty of this approach is using a clustering algorithm before running the prediction 

model. Houses with similar electricity demand profiles are clustered based on their electricity 

demand profiles by means of the k-means clustering technique. This method minimizes the 

within cluster variation based on the Euclidian distance. Empirical testing has pointed out that 

the demand profiles of individual houses change throughout the year, which demands for 

flexible clusters changing over time. Every prediction day the clustering algorithm will be run, 

based on the two preceding weeks, to create suitable clusters. The prediction accuracy does 

not increase at larger clusters, which one should usually expect. The ratings of feature 

importance per cluster for a single validation day differ from each other. This indicates that 

the clusters show different characteristics in the data, not only based on their electricity 

demand but also in other prediction variables. Given this information it can be concluded that 

the clustering adds value to the overall prediction accuracy.  

The selection of the best suitable prediction model is based upon a literature review as well 

as empirical test. The literature review points out that there are multiple broadly used 

algorithms which, dependent on the case specifics, are able to accurately predict electricity 

demand. Most used models are, Support vector machines, Regression Trees and Artificial 

Neural Networks. In this empirical test a set of different algorithms is used to predict the 

electricity demand for several houses. The literature study, together with the empirical test 

has pointed out that the ensembled regression trees have the possibility to accurately predict 

the neighbourhoods’ grid demand, given the provided data.  

The prediction is executed in python with Scikit-learns’ Random Forest Regressor, from their 

Ensembled Learning Machines module. The parameters of the random forest regressor are 

optimized by using a grid search algorithm which tests large variety of parameter setting 

combination, from the Scikit-learn module. The model is validated by predicting 24 hours of 

electricity demand per cluster with, ‘never seen before’ data. The suggested model, is capable 

of predicting the clusters’ next day electricity demand, with an average R2 score of 0.77 and a 

cv-RMSE of 0.41, based on the conducted validations. According the ASHRAE standards some 

improvements are necessary for practical implications (ASHRAE, 2002). Most important 

prediction features is the electricity consumption of the previous day on the same time. Other 
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important features are, humidity, electricity consumption two and three days previous on the 

same time and ambient temperature.  

In summer and spring the prediction accuracy is higher, R2 score of 0.84 and cv-RMSE of 0.43, 

compared to the winter and autumn, R2 score of 0.66 and cv-RMSE of 0.40. This is probably 

due to the differences in weather conditions. In summer and spring the PV generated 

electricity is more stable and constant, where in winter it is very dependent on the cloud 

coverage.  Also the electricity usage in winter and autumn is higher due to the HP which 

provides heating in the dwellings.  

The results show that the number of learners, the data sample size, does not influence the 

prediction accuracy. This is in contrary with the general known principle that ML models 

improve when the data sample increases.  This observation could be used to improve the 

model, by selecting only the most relevant data, of the weeks similar to the prediction day. 

This is further described in the recommendation section, 0. 

In its current form, the prediction model is capable of predicting the trend of the electricity 

demand. However, it is not accurate enough to predict the actual hourly demand so that an 

operating schedule can be determined for the coming 24 hours. It could however be used to 

indicate the amount of excess electricity at the end of the day. This can be very useful when 

trading for demand response, or deciding to use excess electricity for long-term storage.  

Based on the validations conducted in this research, it can be stated that the direct sharing 

potential is low. The indirect sharing however is very high. With a suitable ESS the 

neighbourhood could be self-sufficient majority of the days of the year, assuming the 

validation days are representative for the month. Based on the validation days it is assumed 

that the neighbourhood can be completely self-sufficient  for seven out of twelve months  with 

a storage system capacity of 660kWh. Having long term storage available would increase the 

self-sufficiency even more, as the excess electricity largely exceeds 660kWh in spring and 

summer. 
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6.2 Discussion 
This research contributes in the field of energy demand prediction as it focused on small 

energy consuming entities with renewables on-site. Where the majority of the publication in 

this field of research, compare different prediction models, this study combines two models 

in order to increase the prediction accuracy. Further the study, has suggested an approach to 

increase energy self-sufficiency of residential districts. When implemented this could help 

accelerating the energy transition towards a more self-sustaining society.  

It is known that predicting hourly residential electricity demand is a very difficult task (Lahouar 

& Slama, 2015). The suggested approach, which combines k-means clustering and a random 

forest regressor, enables predicting the one day ahead hourly electricity demand trends fairly 

accurate. However the specific values do deviate too much to create upfront operating rules 

for sharing and storing energy on hourly basis. A critical discussion of the used model, its 

features and the operation system is given.  

When starting this research, the aim was to predict the energy demand for individual 

households. However, after trying many different models and settings the prediction would 

not reach appropriate accuracy. This probably has two main reasons. (I) Unpredictable spikes 

in the demand profile. Individual houses have demand profiles with many spikes, compared 

to the smoother graph when multiple houses are combined. The range of demand for one 

household is very small, which makes the trend sensitive for changes. These spikes are 

probably caused by individual appliances, e.g. dryer, water cooker, vacuum cleaner. This 

brings us to the second reason for poor prediction in individual cases. (II) No user specific data. 

To make the step to individual household prediction other prediction features seem 

necessary. Adding information about the occupancy of the rooms of the dwelling combined 

with the appliances in each room, could lead to more accurate individual household 

predictions. Since individual households don’t have smooth demand graphs and no specific 

user data is available, the prediction of individual households was not feasible in this study.  

It has to be taken into account that the meteorological features are now based on measured 

weather conditions. When bringing this approach to practice, the meteorological features will 

be based on weather forecasts. This will have influence on the accuracy and reliability of the 

model.  

The prediction could possibly be improved by adding occupancy data, since it can indicate 

more precisely when electricity will be used. This could be implemented via sensors in the 

houses which indicate the number of people in a dwelling. Also appliance ownership (including 

electric vehicles) could help improve the model accuracy, as this is used in some recent 

studies. A questionnaire could be used to obtain this data. Lastly, since the grid demand is 

very dependent on the amount of generated electricity by the PV system, solar radiation could 

be adopted in the prediction features.  

As many studies have pointed out, see Literature review, removing the holidays and solely 

focussing on non-holidays, could lead to improved model fitting. However this would not have 

matched with the goal of suggesting a practically applicable method, which includes all type 

of days.  
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The best suitable ESS size, should be designed carefully. In this study the ESS size is solely 

based on the 10 validation days. An over dimensioned ESS brings high capital investment 

which might not be feasible. On the other hand, undersized ESS may not be able to provide 

the desired operational and financial benefits. Also, the size of the ESS is important for the 

effectiveness of frequency regulation (Gao D. , 2015). So it is very important to determine a 

suitable battery size.  

Currently, the Dutch government has an arrangement, ‘salderingsregeling’, for subtracting the 

fed back electricity from the total grid usage in operation (Wiebes & Snel, Omvorming 

Salderen, 2019). This makes the feed-in compensation for excess electricity, up until the total 

electricity demand, equal to the cost price at the electricity supplier up until 2024. This makes 

purchasing and using a large ESS financially unattractive. This regulation is expected to be 

completely reduced to zero by the year 2031 (Wiebes & Snel, Omvorming Salderen, 2019). 

What exact regulations regarding feed-in compensations will be applicable by then is 

uncertain. 
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6.3 Limitations and recommendations for future research 
Throughout the research some bottlenecks, shortcomings and opportunities have come 

across. These are translated in the following recommendations for future research regarding 

energy demand prediction and energy sharing. 

  

- This research has viewed only single days for validation. It seems that on many of the 

validation days, the excess electricity is enough to cover the grid demand the next day, 

before the PV systems start generating electricity again. Looking over a longer period 

of time, at least two days, to see how much storage really can be used in the 

neighbourhood and how much surplus is there for long-term sharing and demand 

response trading will be useful. This would also give a better view on the actual 

increase of self-sufficiency of the neighbourhood. For this, automation of the 

validation process would be preferred. 

- Predicting electricity demand and electricity production separately like in the study of 

(Kneiffel & Webb, 2016) is preferred. It is generally known that the importance of 

prediction variables for both consumption and prediction differ quite a lot. The 

production values are solely dependent on the weather conditions, where the 

consumption values are dependent on both user behaviour and weather conditions. 

When looking at the ‘raw’ consumption and production patterns, great differences can 

be observed. So separately predicting each pattern and later merge them could lead 

to increased model fitting.   

- The autoregressive features of previous day seems to be the most important 

prediction variable. The prediction accuracy would improve if the autoregressive 

variables could be even with a shorter interval, ts-1hour. This could have a large impact 

on the prediction model. However this is not possible when predicting for one day 

ahead. The model could be reformed to predict the electricity demand for one  hour 

ahead and possibly be more precise, taking both the very short term, ts-1hour, and the 

more long-term, historical consumption patterns into account. 

- It would be useful to more thoroughly test multiple optimized prediction algorithms. 

The empirical test conducted in this study used default settings of some widely used 

models. The literature study has pointed out that there are large differences, in model 

accuracy, between standard and optimized models. Despite the fact that they are very 

common in the literature review, this study has not tested ANN related models in the 

empirical test for selecting a prediction model. This is due to the set time span of this 

study, of six months, and the needed extensive knowledge and experience to setup an 

optimized ANN model.   

- The suggested operating rules are only suggested steps to improve energy self-

sufficiency based on logic.  The operating suggestions can be extended to a more 

advanced set of rules when taking dynamic energy pricing and trading for demand 

response into account. Dynamic pricing, as currently applicable in the case, gives 

opportunities to maximize profit/minimize costs for the usage of an ESS. To improve 

the financial feasibility of the ESS, the operating system could be optimized regarding 
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the different tariffs, charging during low tariff and discharging during high tariff. A 

multi objective linear optimisation program where the energy sharing is maximized 

while minimizing the costs could be a useful alternative. The exact application of such 

optimisation model is, of course, dependent on the intentions of the system owner.   

- The direct sharing is very low when compared to the total grid demand. When looking 

at a shorter interval, 15-minutes instead of hourly might change this. However, this 

could also make the prediction accuracy worse.  

- The operating system could be used with real time data instead of the predicted data, 

this assures using correct values for the sharing. This probably requires different 

network and electrical circuit setup. 

- It is possible to use the model to see what influences climate change has, on the 

electricity consumption of the neighbourhood. Since the model does predict the 

electricity demand trends accurately. By changing the meteorological features, 

temperature and humidity, the change in electricity demand becomes visible. For 

example, running multiple prediction models with actual temperature and with 

increased temperature (0.5, 1.0, 1.5 and 2.0 degrees Celsius) and compare the demand 

profiles.   

- Currently the prediction model uses all the available data, up until the training day. 

Using only training data of similar months and seasons, 6-10 weeks preceding on the 

prediction day, might improve the accuracy. The results of this study points out that 

the most resent consumption data is the most important for the prediction results.  

 

 

Acknowledgement 
 

Royal BAM group, provided the dataset for this study as it is one of the funders of the  ‘Smart 

Energy Systems in the Built Environment’ (SES-BE) research program. This program, hosted by 

Eindhoven University of Technology, focuses on  the development of management and control 

systems, the development of emerging hardware technologies to be used in buildings, the ICT-

enabled energy services (monitoring and prediction, data mining, market-based and real-time 

control), as well as technology exploitation via new business models and a realistic simulation 

environment (modelling lab) for testing entrepreneurship ideas and government policies (SES-

BE, 2019).   



Machine learning approach to predict the energy sharing potential in a neighbourhood  V.B.C. (Vince) Bergkamp 

94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page was intentionally left blank. 

 

 

 

  



Machine learning approach to predict the energy sharing potential in a neighbourhood  V.B.C. (Vince) Bergkamp 

95 

 

Bibliography 
ACM, A. C. (2015). Netcode Elektriciteit. Authoriteit, Consument & Markt. 

Arregi, B., & Garay, R. (2017). Regression analysis of the energy consumption of tertiary 

buildings. Energy Procedia, 9 - 14. 

ASHRAE. (2002). Measurement of Energy and Demand Savings. Tullie Circle, Atlanta, USA: 

ASHRAE. 

Barton, J., & Infield, D. (2004). Energy Storage and its use with Intermittend Renewable 

Energy. Loughborough University, UK. 

Beckel, C., Sadamori, L., Staake, T., & Santini, S. (2014). Revealing household characteristics 

from smart meter data. Energy, 397 - 410. 

Bernards, R. (2018). Smart Planning; Integration of statistical and stochastic methods in 

distribution nettwork planning. Drunen. 

Biwas, R., Robinson, M., & Fumo, N. (2016). Prediction of residential building energy 

consumption: A neural network approach. Energy, 84-92. 

Bouare, O. (2008). Impact of Global Warming on Rural-Urban Migration and Net Emigration in 

Forefront Sub-Saharan Countries. 2 African Journal of Public Affairs. 

CBS. (2018). Hernieuwbare energie in Nederland 2017. Den Haag: Centraal Bureau voor de 

Statistiek. 

Costa, A., Keane, M., Torrens, J., & Corry, E. (2013). Building Operation and Energy 

Performance: Monitoring, analysis and optimisation toolkit. Applied Energy, 310 - 316. 

Cucchiella, F., D’Adamo, I., & Gastaldi, M. (2017). The Economic Feasibility of Residential 

Energy Storage Combined with PV Panels: The Role of Subsidies in Italy. Energies. 

Darbellay, G., & Slama, M. (2000). Forecasting the short-term demand for electricity. Do 

neural networks stand a better chance? International Journal of Forecasting, 71–83. 

DeLong, E., DeLong, D., & Clarke-Pearson, D. (1988). Comparing the Areas under Two or More 

Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. 

Biometrics, 837-845. 

Dong, B., Cao, C., & Lee, S. (2005). Applying support vector machines to predict building energy 

consumption in tropical region. Energy and Buildings, 545 – 553. 

Fan, C., Xiao, F., & Zhao, Y. (2017). A short-term building cooling load prediction method using 

deep learning algorithms. Applied Energy, 222–233. 

Fumo, & Biswas. (2015). Regression analysis for prediction of residential energy consumption. 

Renewable and Sustainable Energy Reviews, 332-343. 

Gao, D. (2015). Energy Storage for Sustainable Microgrid. London: Elsevier. 



Machine learning approach to predict the energy sharing potential in a neighbourhood  V.B.C. (Vince) Bergkamp 

96 

 

Gao, X., & Wang, X. (2017). Impacts of Global Warming and Sea Level Rise on Service Life of 

Chloride-Exposed Concrete Structures. Sustainability. 

HaskoningDHV, R. (2018, Dec 21). NEARLY ZERO-ENERGY BUILDINGS - MORE INFORMATION. 

Opgehaald van Royal HaskoningDHV: https://www.royalhaskoningdhv.com/en-

gb/services/a-z-services/nearly-zero-energy-buildings-more-information/394 

Houimli, R., Zmami, M., & Ben-Salha, O. (2019). Short-term electric load forecasting in Tunisia 

using artificial neural networks. Energy Systems. 

Hunter, J., Dale, D., Firing, E., Droettboom, M., & team, M. D. (2019, May 5). matplotlib - home. 

Opgehaald van matplotlib: https://matplotlib.org/# 

Huo, J., Shi, T., & Chang, J. (2016). Comparison of Random Forest and SVM for Electrical Short-

term Load Forecast with Different Data Sources. IEEE International Conference on 

Software Engineering and Service Science, 1077 - 1080. 

James, G., Witten, D., & Hastie, T. T. (2017). An Introduction to Statistical Learning, with 

applications in R. New York: Springer. 

Junker, G., Azara, A., Lopes, R., Lindberg, K., Reynders, G., Relan, R., & Madsen, H. (2018). 

Characterizing the energy flexibility of buildings and districts. Applied Energie, 175–

182. 

Jurado, S., Peralta, J., Nebot, A., Mugica, F., & Cortez, P. (2013). Short-term Electric Load 

Forecasting Using Computational Intelligence Methods. IEEE International Conference 

on Fuzzy Systems. 

Kantor, I., Rowlands, I., Parker, P., & Lazowski, B. (2015). Economic feasibility of residential 

electricity storage systems in Ontario, Canada considering two policy scenarios. Energy 

and Buildings, 222 - 232. 

Kneiffel, J., & Webb, D. (2016). Predicting energy performance of a net-zero energy building: 

A Statistical Approach. Applied Energy, 468–483. 

KNMI. (2019, April 1). Kennis & uitleg, Zomer. Opgehaald van KNMI: 

https://www.knmi.nl/kennis-en-datacentrum/uitleg/zomer 

Kontokosta, C., & Tull, C. (2017). A data-driven predictive model of city-scale energy use in 

buildings. Applied Energy, 303–317. 

Kuo, P., & Huang, C. (2018). A High Precision Artificial Neural Networks Model for Short-Term 

Energy Load Forecasting. Energies. 

Lahouar, A., & Slama, J. (2015). Day-ahead load forecast using random forest and expert input 

selection. Energy Conversion and Management, 1040–1051. 

Li, P. (2008). Energy Storage Is the Core of Renewable Energy Technologies. IEEE 

NANOTECHNOLOGY MAGAZINE. 

Li, P., & Chan, C. (2017). Thermal Energy storage analysis and design. Arizona (USA): Elsevier. 



Machine learning approach to predict the energy sharing potential in a neighbourhood  V.B.C. (Vince) Bergkamp 

97 

 

Li, Q., Meng, Q., Cai, J., Yoshino, H., & Mochida, A. (2009). Predicting hourly cooling load in the 

building: A comparison of support vector machine and different artificial neural 

networks. Energy Conversion and Management, 90–96. 

Li, Q., Ren, P., & Meng, Q. (2010). Prediction Model of Annual Energy Consumption of 

Residential Buildings. Institute of Electrical and Electronics Engineers, 223 - 226. 

Masson, G., & Kaizuka, I. (2018). Trends 2018 in photovoltaic applications. Survey Report of 

Selected IEA Countries between 1992 and 2017. Sweden: International Energy Agency. 

Mocanu, E., Nguyen, P., Gibescu, M., & Kling, W. (2016). Deep learning for estimating building 

energy consumption. Sustainable Energy, Grids and Networks, 91 - 96. 

NUMFOCUS. (2019, March 27). About NumPy. Opgehaald van Numpy: 

http://www.numpy.org/# 

Panasonic. (2019, 05 23). Panasonic - Energy Solutions - Battary Storage - Harbor Plus. 

Opgehaald van Harbor Plus™ Smart Battery Storage System: 

https://na.panasonic.com/us/energy-solutions/battery-storage/battery-

storage/harbor-plustm-smart-battery-storage-system 

Pandas. (2019, March 27). The pandas project. Opgehaald van Pandas: 

https://pandas.pydata.org/about.html 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duchesnay, 

E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning 

Research, 2825--2830. 

Pelc, Araújo, Bell, Blanchard, Bonebrake, Chen, . . . Colwell. (2017). Biodiversity redistribution 

under climate change: Impacts on ecosystems and human well-being. Science journals 

AAAS. 

PFS, P. F. (2019, March 27). About. Opgehaald van Python Foundation Software: 

https://www.python.org/about/ 

Pricewise. (2019, 07 10). energieprijzen kWh-prijs. Opgehaald van pricewise: 

https://www.pricewise.nl/energieprijzen/kwh-prijs/ 

Reddy, T. A., Saman, N. F., Claridge, D. E., Haberl, J. S., Turner, W. D., & Chalifoux, A. T. (1997). 

Baselining methodology for facility-level monthly energy use - Part 1: theoretical 

aspects. ASHRAE Transactions, 336-347. 

Reynders, G., Lopes, R., Marszal-Pomianowska, A., Aelenei, D., Martins, J., & Saelens, D. 

(2018). Energy flexible buildings: An evaluation of definitions and quantification 

methodologies applied to thermal storage. Energy & Buildings, 372–390. 

Reynolds, C., & Fels, M. (1988). Reliability Criteria for weather Adjustment of Energy Billing 

Data. Center for Energy and Environmental Studies , 236 - 251. 



Machine learning approach to predict the energy sharing potential in a neighbourhood  V.B.C. (Vince) Bergkamp 

98 

 

Robinson, C., Dilkina, B., Hubbs, J., Zhang, W., Guhathakurta, S., Brown, M., & Pendyala, R. 

(2017). Machine learning approaches for estimating commercial building energy 

consumption. Applied Energy, 889–904. 

Rodrigues, F., Cardeira, C., & Calado, J. (2014). The daily and hourly energy consumption and 

load forecasting using artificial neural network method: a case study using a set of 93 

households in Portugal . Energy Procedia, 220 – 229 . 

RVO. (2018). Electrisch Vervoer in Nederland . Den Haag: Rijksdienst voor Ondernemend 

Nederland. 

RVO. (2019, January 4). Beleid electrisch rijden. Opgehaald van rvo duurzaam ondernemen 

electrisch rijden : https://www.rvo.nl/onderwerpen/duurzaam-ondernemen/energie-

en-milieu-innovaties/elektrisch-rijden/beleid-elektrisch-rijden 

Ryu, S., Noh, J., & Kim, H. (2016). Deep Neural Network Based Demand Side Short Term Load 

Forecasting . Energies. 

Scikit-learn. (2019, June 26). RandomForestRegressor. Opgehaald van scikit-learn: 

https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.htm

l 

SES-BE. (2019, May 10). Summary of the SES-BE program. Opgehaald van SES-BE: https://ses-

be.tue.nl/ 

Seyedzadeh, S., Rahimian, F., Glesk, I., & Roper, M. (2018). Machine learning for estimation of 

building energy consumption and performance: a review. Visualisation in Engineering. 

SmartGrids, E. T. (2012). Strategic Research Agenda (SRA), update of the SmartGrids SRA 2007 

for the needs of 2035 STRATEGIC RESEARCH AGENDA. Leuven: European Technology 

Platform SmartGrids. 

Smola, A., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and 

Computing, 199 – 222. 

sunrise-and-sunset.com. (2019, 06 29). Zonsopgang en zonsondergang Amsterdam. 

Opgehaald van sunrise-and-sunset : https://www.sunrise-and-

sunset.com/nl/sun/nederland/amsterdam/2017/mei 

Swan, L., & Ugursal, I. (2009). Modeling of end-use energy consumption in residential sector: 

A review of modeling techniques. Renewable and Sustainable Energy Reviews, 1819–

1835. 

SwitchExpert. (2019, 07 10). Terugleververgoeding energie van zonnepanelen. Opgehaald van 

energieleveranciers: 

https://www.energieleveranciers.nl/zonnepanelen/terugleververgoeding-

zonnepanelen 



Machine learning approach to predict the energy sharing potential in a neighbourhood  V.B.C. (Vince) Bergkamp 

99 

 

Taylor, J., Menezes, L., & McSharry, P. (2016). A comparison of univariate methods for 

forecasting electricity demand up to a day ahead. International Journey of Forecasting, 

1 - 16. 

Tesla. (2019, 05 23). Powerwall. Opgehaald van Maak kennis met Powerwall, uw batterij voor 

thuis.: https://www.tesla.com/nl_NL/powerwall 

Tso, G., & Yau, K. (2005). Predicting electricity energy consumption: A comparison of 

regression analysis, decision tree and neural networks. Science Direct: Energy, 1761–

1768. 

United-Nations. (2015). Paris Agreement. Paris: United Nations. 

Wang, Z., Wang, Y., Zeng, R., Srinivasan, R., & Ahrentzen, S. (2018). Random Forest based 

hourly building energy prediction. Energy & Buildings, 11 - 25 . 

Wiebes, E. (2019, 3 22). Stimulering Duurzame Energieproductie. Kamerbrief (SDE+) 2018 

December 21. Den Haag, Noord Holland, Nederland: De Voorzitter van de Tweede 

Kamer der Staten-Generaal. Opgehaald van Rijksoverheid: 

https://www.rijksoverheid.nl/ministeries/ministerie-van-economische-zaken-en-

klimaat/documenten/kamerstukken/2018/12/21/kamerbrief-over-stimulering-

duurzame-energieproductie-sde-2019 

Wiebes, E., & Snel, M. (2019, 04 25). Omvorming Salderen. Den Haag, Noord-Holland, 

Nederland : De Voorzitter van de Tweede Kamer der Staten-Generaal. 

Xu, X., Wang, W., Hong, T., & Chen, J. (2019). Incorporating machine learning with building 

network analysis to predict multi-building energy use . Energy & Buildings, 80 - 97. 

Zhao, H., & Magoulès, F. (2012). A review on the prediction of building energy consumption. 

Renewable and Sustainable Energy Reviews, 3586 – 3592. 

 

  



Machine learning approach to predict the energy sharing potential in a neighbourhood  V.B.C. (Vince) Bergkamp 

100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page was intentionally left blank.  



Machine learning approach to predict the energy sharing potential in a neighbourhood  V.B.C. (Vince) Bergkamp 

101 

 

Appendices 
  



Machine learning approach to predict the energy sharing potential in a neighbourhood  V.B.C. (Vince) Bergkamp 

102 

 

Appendix I – Missing values 
 

House 
nr 

 Total missing values 
consumption 

Missing values in 
production data 

Total missing values 
grid_consumption 

Total missing value 
percentage 

After filling 
Grid 
consumption 

Left percentage 
missing values 

4776 3210 758 3968 5.65% 786 1.12% 

4794 3181 763 3944 5.62% 791 1.13% 

4781 2953 764 3717 5.30% 792 1.13% 

4703 3148 793 3941 5.62% 793 1.13% 

4783 2854 768 3622 5.16% 796 1.13% 

4715 3651 774 4425 6.31% 802 1.14% 

4718 4079 782 4861 6.93% 811 1.16% 

4700 4407 788 5195 7.40% 816 1.16% 

4732 3257 795 4052 5.77% 823 1.17% 

4701 3028 798 3826 5.45% 826 1.18% 

4788 3060 807 3867 5.51% 835 1.19% 

4997 3294 809 4103 5.85% 837 1.19% 

4804 3202 811 4013 5.72% 839 1.20% 

4793 3174 812 3986 5.68% 840 1.20% 

4818 3173 812 3985 5.68% 841 1.20% 

4734 3169 817 3986 5.68% 845 1.20% 

4733 3154 824 3978 5.67% 852 1.21% 

4808 3287 826 4113 5.86% 855 1.22% 

4735 3262 831 4093 5.83% 859 1.22% 

4791 3276 835 4111 5.86% 863 1.23% 

5006 3322 836 4158 5.93% 864 1.23% 

4714 3872 845 4717 6.72% 873 1.24% 

4800 3436 848 4284 6.10% 876 1.25% 

4790 2979 854 3833 5.46% 882 1.26% 

4796 3541 863 4404 6.28% 891 1.27% 

4827 3721 872 4593 6.54% 900 1.28% 

4707 3927 883 4810 6.85% 911 1.30% 

7056 4243 885 5128 7.31% 914 1.30% 

4756 3997 908 4905 6.99% 936 1.33% 

4760 3640 912 4552 6.49% 941 1.34% 

4757 3787 935 4722 6.73% 963 1.37% 

4738 4197 939 5136 7.32% 967 1.38% 

4759 5124 1070 6194 8.83% 1135 1.62% 

4754 4852 1117 5969 8.51% 1155 1.65% 

4698 5119 1157 6276 8.94% 1228 1.75% 

4824 5579 920 6499 9.26% 1235 1.76% 

4739 6145 1583 7728 11.01% 1629 2.32% 

4745 6189 1701 7890 11.24% 1754 2.50% 

4746 7816 1768 9584 13.66% 1844 2.63% 

4742 6471 1804 8275 11.79% 1847 2.63% 

5014 6342 1870 8212 11.70% 1899 2.71% 
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5016 6379 1886 8265 11.78% 1915 2.73% 

4747 6875 1877 8752 12.47% 1974 2.81% 

5015 6712 2000 8712 12.41% 2028 2.89% 

5005 7065 885 7950 11.33% 2037 2.90% 

4752 6867 1950 8817 12.56% 2055 2.93% 

4805 7108 918 8026 11.44% 2090 2.98% 

4807 6752 1184 7936 11.31% 2193 3.13% 

4780 7870 745 8615 12.28% 2478 3.53% 

4820 8283 788 9071 12.93% 2520 3.59% 

4706 11804 2516 14320 20.41% 2549 3.63% 

5008 8062 808 8870 12.64% 2559 3.65% 

5012 8194 846 9040 12.88% 2597 3.70% 

4821 8576 906 9482 13.51% 2615 3.73% 

4829 9426 929 10355 14.76% 2657 3.79% 

4716 7606 1778 9384 13.37% 2659 3.79% 

4687 9522 2715 12237 17.44% 2816 4.01% 

4689 9546 2737 12283 17.50% 2848 4.06% 

4692 9406 2764 12170 17.34% 2874 4.10% 

5010 9629 3017 12646 18.02% 3046 4.34% 

4741 8380 1879 10259 14.62% 3253 4.64% 

4758 11202 3390 14592 20.79% 3415 4.87% 

5013 11834 2597 14431 20.56% 3646 5.20% 

4696 13487 2798 16285 23.21% 4036 5.75% 

4809 9358 2114 11472 16.35% 4063 5.79% 

4798 13560 1550 15110 21.53% 4557 6.49% 

4778 15809 5086 20895 29.78% 5127 7.31% 

4775 10515 841 11356 16.18% 8299 11.83% 

5009 3416 8970 12386 17.65% 8999 12.82% 

4731 12760 1072 13832 19.71% 9961 14.19% 

average 6145 1444 7589 10.81% 2043 2.91% 
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Appendix II – Cluster sizes  

 
n_cluster = 6  

Week 31-32 Week 22-23 

Cluster nr Nr of houses Cluster nr Nr of houses 

1 24 1 34 

3 18 0 24 

0 15 4 9 

4 11 5 1 

5 1 3 1 

2 1 2 1 

Week 4-5 Week 10-11 

Cluster nr Nr of houses Cluster nr Nr of houses 

5 24 4 24 

1 19 1 16 

0 16 3 14 

2 9 0 11 

4 1 5 4 

3 1 2 1 

Week 44-45 

Cluster nr Nr of houses 

1 40 

4 19 

0 8 

5 1 

3 1 

2 1 

 

  



Machine learning approach to predict the energy sharing potential in a neighbourhood  V.B.C. (Vince) Bergkamp 

105 

 

n_cluster = 5 

weeks 5-6 weeks 13-14 

Cluster Nr of houses Cluster Nr of houses 

0 42 1 25 

3 21 0 18 

2 6 2 15 

4 1 4 12 

1 1 3 1 

week 49-50 week 15-16 

Cluster Nr of houses Cluster Nr of houses 

0 30 2 25 

1 27 1 17 

4 11 3 16 

3 1 0 11 

2 1 4 1 

weeks 31-32 

Cluster Nr of houses 

0 22 

4 17 

2 16 

3 14 

1 2 
  

 

n_clusters = 4 

Week 7-8 Week 27-28 

Cluster nr Nr of houses Cluster nr Nr of houses 

2 35 1 25 

0 22 3 19 

1 7 2 15 

3 6 0 11 

Week 15-16 Week 12-13 

Cluster nr Nr of houses Cluster nr Nr of houses 

0 25 1 24 

3 18 3 19 

1 16 0 16 

2 11 2 11 

Week 31-32 

Cluster nr Nr of houses 

0 27 

1 23 

3 17 

2 3 

  



Machine learning approach to predict the energy sharing potential in a neighbourhood  V.B.C. (Vince) Bergkamp 

106 

 

Appendix III – Cluster distribution September 2017 
 

Cluster 0 Cluster 1 Cluster 2 Cluster 3 

grid_consumption_4776 grid_consumption_4687 grid_consumption_4696 grid_consumption_4742 

grid_consumption_4780 grid_consumption_4689 grid_consumption_4698 grid_consumption_4745 

grid_consumption_4781 grid_consumption_4692 grid_consumption_4701 grid_consumption_4746 

grid_consumption_4788 grid_consumption_4700 grid_consumption_4707 Total: 3 

grid_consumption_4790 grid_consumption_4703 grid_consumption_4715 
 

grid_consumption_4793 grid_consumption_4706 grid_consumption_4718 
 

grid_consumption_4798 grid_consumption_4714 grid_consumption_4735 
 

grid_consumption_4800 grid_consumption_4716 grid_consumption_4747 
 

grid_consumption_4807 grid_consumption_4731 grid_consumption_4752 
 

grid_consumption_4808 grid_consumption_4732 grid_consumption_4754 
 

grid_consumption_4809 grid_consumption_4733 grid_consumption_4757 
 

grid_consumption_4818 grid_consumption_4734 grid_consumption_4758 
 

grid_consumption_4820 grid_consumption_4738 grid_consumption_4759 
 

grid_consumption_4821 grid_consumption_4739 grid_consumption_4760 
 

grid_consumption_4824 grid_consumption_4741 grid_consumption_4775 
 

grid_consumption_4827 grid_consumption_4756 grid_consumption_4778 
 

grid_consumption_4829 Total: 16 grid_consumption_4783 
 

grid_consumption_4997 
 

grid_consumption_4791 
 

grid_consumption_5005 
 

grid_consumption_4794 
 

grid_consumption_5008 
 

grid_consumption_4796 
 

grid_consumption_5009 
 

grid_consumption_4804 
 

grid_consumption_5010 
 

grid_consumption_4805 
 

grid_consumption_5012 
 

grid_consumption_5006 
 

grid_consumption_5016 
 

grid_consumption_5013 
 

Total: 24 
 

grid_consumption_5014 
 

  
grid_consumption_5015 

 

  
grid_consumption_7056 

 

  
Total: 27 

 

    

    

    

 
Total: 19 
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Appendix IV – Feature importance 
Feature importance May 19th 2017 

Cluster 0 Cluster 1 Cluster 2 Cluster 3 

feature_name
s 

feature_imp
ortance 

feature_name
s 

feature_imp
ortance 

feature_name
s 

feature_imp
ortance 

feature_name
s 

feature_imp
ortance 

tot_gridconsu
med ts-1day 

0.5548 tot_gridconsu
med ts-1day 

0.5698 tot_gridconsu
med ts-1day 

0.5357 tot_gridconsu
med ts-1day 

0.4561 

Humidity 0.1059 Humidity 0.1069 Humidity 0.1222 tot_gridconsu
med ts-3days 

0.1701 

tot_gridconsu
med ts-2days 

0.1038 tot_gridconsu
med ts-2days 

0.0916 Temperature 0.1096 Humidity 0.1308 

tot_gridconsu
med ts-3days 

0.0521 Temperature 0.0396 tot_gridconsu
med ts-3days 

0.0754 tot_gridconsu
med ts-2days 

0.0631 

Temperature 0.0341 tot_gridconsu
med ts-3days 

0.0371 tot_gridconsu
med ts-2days 

0.0423 Temperature 0.0613 

tot_gridconsu
med ts-4days 

0.0298 tot_gridconsu
med ts-5days 

0.0368 tot_gridconsu
med ts-4days 

0.0176 tot_gridconsu
med ts-4days 

0.0221 

tot_gridconsu
med ts-5days 

0.0289 tot_gridconsu
med ts-4days 

0.0270 tot_gridconsu
med ts-7days 

0.0160 tot_gridconsu
med ts-7days 

0.0163 

tot_gridconsu
med ts-7days 

0.0191 tot_gridconsu
med ts-7days 

0.0192 tot_gridconsu
med ts-6days 

0.0146 tot_gridconsu
med ts-5days 

0.0154 

tot_gridconsu
med ts-6days 

0.0170 tot_gridconsu
med ts-6days 

0.0157 tot_gridconsu
med ts-5days 

0.0132 tot_gridconsu
med ts-6days 

0.0144 

tot_gridconsu
med ts-14days 

0.0125 Dew point 
temp 

0.0123 tot_gridconsu
med ts-14days 

0.0103 Dew point 
temp 

0.0103 

Dew point 
temp 

0.0110 tot_gridconsu
med ts-14days 

0.0120 Dew point 
temp 

0.0101 tot_gridconsu
med ts-14days 

0.0102 

part_of_day_
Morning 

0.0036 part_of_day_
Morning 

0.0050 part_of_day_
Morning 

0.0052 part_of_day_
Morning 

0.0033 

season_winter 0.0032 season_winter 0.0027 part_of_day_A
fternoon 

0.0034 part_of_day_A
fternoon 

0.0023 

part_of_day_A
fternoon 

0.0024 part_of_day_A
fternoon 

0.0021 season_spring 0.0027 season_winter 0.0022 

season_spring 0.0016 weekday_Sun
day 

0.0019 part_of_day_N
ight 

0.0020 season_autum
n 

0.0019 

month_March 0.0016 season_spring 0.0019 season_winter 0.0019 season_spring 0.0018 

weekday_Sund
ay 

0.0015 season_autum
n 

0.0015 season_autum
n 

0.0018 part_of_day_N
ight 

0.0014 
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weekday_Wed
nesday 

0.0014 weekday_Satu
rday 

0.0015 weekday_Sun
day 

0.0011 season_summ
er 

0.0012 

weekday_Satu
rday 

0.0014 weekday_Frid
ay 

0.0014 weekday_Satu
rday 

0.0011 weekday_Frid
ay 

0.0012 

weekday_Frid
ay 

0.0013 month_March 0.0012 weekday_Tues
day 

0.0011 weekday_Tues
day 

0.0012 

season_autum
n 

0.0013 weekday_Wed
nesday 

0.0012 part_of_day_E
vening 

0.0010 month_Januar
y 

0.0011 

weekday_Tues
day 

0.0013 weekday_Tues
day 

0.0012 weekday_Frid
ay 

0.0010 month_June 0.0011 

month_June 0.0012 weekday_Thur
sday 

0.0011 season_summ
er 

0.0010 weekday_Sun
day 

0.0011 

weekday_Thur
sday 

0.0010 month_June 0.0011 weekday_Mon
day 

0.0009 weekday_Satu
rday 

0.0010 

weekday_Mon
day 

0.0010 month_May 0.0010 month_March 0.0009 weekday_Wed
nesday 

0.0010 

part_of_day_N
ight 

0.0008 weekday_Mon
day 

0.0010 month_Januar
y 

0.0008 weekday_Mon
day 

0.0009 

month_May 0.0008 month_April 0.0009 month_July 0.0008 month_March 0.0009 

month_July 0.0008 month_July 0.0007 month_June 0.0008 month_April 0.0009 

month_April 0.0008 part_of_day_N
ight 

0.0006 month_April 0.0008 month_July 0.0008 

season_summ
er 

0.0006 month_Septe
mber 

0.0006 weekday_Wed
nesday 

0.0008 weekday_Thur
sday 

0.0008 

part_of_day_E
vening 

0.0005 season_summ
er 

0.0005 weekday_Thur
sday 

0.0008 month_Februa
ry 

0.0007 

month_Januar
y 

0.0005 month_Februa
ry 

0.0005 month_Februa
ry 

0.0006 part_of_day_E
vening 

0.0007 

month_Septe
mber 

0.0005 part_of_day_E
vening 

0.0005 month_May 0.0006 month_May 0.0007 

month_Februa
ry 

0.0005 month_Octob
er 

0.0005 month_Octob
er 

0.0005 month_Novem
ber 

0.0004 

month_Novem
ber 

0.0004 month_August 0.0005 month_Septe
mber 

0.0004 month_August 0.0004 

month_August 0.0004 month_Januar
y 

0.0004 month_August 0.0004 month_Octob
er 

0.0004 

month_Octob
er 

0.0003 month_Novem
ber 

0.0004 month_Novem
ber 

0.0004 month_Septe
mber 

0.0003 
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month_Decem
ber 

0.0002 month_Decem
ber 

0.0002 month_Decem
ber 

0.0003 month_Decem
ber 

0.0002 

Appendix V – Hyperparameter tuning code and output 
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Appendix VI – Prediction and measured values plots 
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Appendix VII – Code 

Data pre-preparation 
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Missing values and clustering set 
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Clustering 

Creating accumulated cluster sets example 
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K-means clustering example 
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Prediction 

Hyperparameter tuning 

 

 



Machine learning approach to predict the energy sharing potential in a neighbourhood  V.B.C. (Vince) Bergkamp 

120 

 

Prediction example
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