

The translation of ambiguous client requirements into

product specifications

By: Masoud Delghandi

Master Thesis

Construction Management and Engineering
Eindhoven University of Technology

February, 2018

Date final presentation: February 27, 2018

Supervisors:
Prof. Dr. Ir. B. (Bauke) de Vries – TU/e
Ir. Ing. A. (Aant) van der Zee – TU/e
Ir. W. (Wiet) Mazairac – TU/e

This page is intentionally left blank

Colophon

General
Report : The translation ambiguous client requirements into product specifications

Date : February 20, 2018
Date presentation : February 27, 2018
Place : Eindhoven

Student
Author : Masoud Delghandi
Student number : 0831557
E-mail : m.delghandi@student.tue.nl
 : masouddelghandi@live.nl
University : Eindhoven University of Technology
Master Track : Construction Management and Engineering
Chair : Information Systems in the Built Environment

Supervisors

Chairman
Prof. Dr. Ir. B. (Bauke) de Vries – TU/e

First supervisor
Ir. Ing. A. (Aant) van der Zee – TU/e

Second supervisor
Ir. W. (Wiet) Mazairac – TU/e

Eindhoven University of Technology
Den Doldech 2
Postbus 513
5612AZ Eindhoven
www.tue.nl

mailto:m.delghandi@student.tue.nl

This page is intentionally left blank

Preface

This thesis forms the last task that I was required to produce, present, and defend to successfully finish the Master
track in Construction Management and Engineering at Eindhoven University of Technology. After finishing my first
degree in Building Engineering at the ID-college in Gouda on the Secondary Vocational Educational level, I found that I
fell in love with a variety of topics related to the domain of Architecture, Engineering and Construction. This feeling
challenged me to attend at The Hague University of Applied Science to achieve a bachelor degree in the Built
Environment. The more knowledge I gained, the more I found that crucial knowledge was missing. This induced me to
attend to the Master track Construction Management and Engineering (CME) at Eindhoven University of Technology.
I found that the Master Track CME could offer me knowledge on the variety of interests that I have within the domain
of Architecture, Engineering and Construction. This especially to the topics of building information management,
process management, project management, urban planning, legal and governance, and information systems within
the built environment. The curriculum of the Master track gave me the opportunity to select the courses in which I
wanted to learn or excel in. Of course, during both the Master and this graduation process, a lot of fellow humans
helped me out by achieving my results. That’s why I would like to take a moment to show my sincere gratitude for
these persons.

I felt inspired from the first until the last moment that I got in contact with Prof. Dr. Ir. B. (Bauke) de Vries. Professor
de Vries provided me always with the right information and knowledge and always challenged me during the mentoring
conversations. His patience, guidance and expertise were of great importance both during my development as a
Master student and this final graduation project. Before Prof. Dr. Dipl. Ing. J. (Jakob) Beetz was leaving the Eindhoven
University of Technology, I was lucky enough to be guided under his supervision during a half year Research and
Development project. During this project, he challenged and revealed me the level of competence that is required to
contribute and solve problems for mankind. He inspired and taught me how to get familiar with computer science and
programming for Architecture, Construction and Engineering, and what level of effort and dedication it takes to be
ahead of the curve in this field. During my Master I attended to some courses where I found Ir. A. (Aant) van der Zee
being related to the topics of Architecture, Building, Planning, and automation. A few semesters deep, I experienced
that Ir. A. (Aant) van der Zee was more than familiar with programming of all sorts of things. I found that he could guide
and teach me how communication with computer experts should be in order to introduce and initiate automation for
certain engineering purposes. Ir. A. (Aant) van der Zee taught me the difference in how humans think they are specific,
what being specific really is and requires, and how this relates to Construction Management and Engineering. This was
what initiated this research initiative at first.

Ir. T. (Thomas) Krijnen, thank you for that morning that we were sitting and talking about the possibilities that I had to
transform my ideas in a computer program, this conversation inspired and motivated me a lot. I also want to show my
sincere gratitude to Ir. W. (Wiet) Mazairac for being that flexible to attend to my graduation commission given his busy
schedule. I felt blessed to have a roomy such as you Kay Wortel. You, as Math and Computer Science student stood
next to me during my crave yard shifts to get this program in Java code up and running.

Finally, I want to thank my mother and father for bringing my brother and me over to the Netherlands since 1993. You
both took a lot of calculated risks for us. Yours and my brothers’ education, loyalty, patience, courage, guts, guidance,
and energy is nowhere written in books and took me where and what I am today.

I hope that this thesis report will contribute to the domain of Construction Management and Engineering, to science
in general, and that you as a reader will have an amusing and instructive experience while reading this.

Masoud Delghandi

This page is intentionally left blank

3

Contents

Contents .. 3

1. Glossary .. 7

1.1 List of figures ... 7

1.2 List of tables .. 10

1.3 List of abbreviations .. 11

Abstract ... 13

Summary ... 15

Samenvatting ... 17

2 Introduction .. 19

2.1 Motivation ... 20

2.2 Problem definition ... 22

2.3 Research scope .. 23

2.4 Importance .. 24

2.5 Related work ... 24

2.6 Primary hypothesis & objective .. 26

2.7 Research questions ... 26

2.8 Research design ... 27

2.9 Expected results .. 29

3 Literature review... 31

3.1 Motivation ... 31

3.2 Design process ... 32

3.2.1 Information exchange in the design process .. 35

3.2.2 Systems engineering ... 37

3.2.3 Design phases.. 43

3.2.4 Requirements .. 45

3.2.5 Verification .. 50

3.2.6 Conclusions ... 51

3.3 Knowledge Management .. 53

3.3.1 From data to knowledge ... 56

3.3.2 Conclusion ... 58

3.4 Natural language constraints .. 60

4

3.4.1 Constraints within engineering ... 60

3.4.2 Methods of using constraints ... 62

3.4.3 Constraint entry .. 62

3.4.4 Conclusion ... 66

4 In-house practices ... 67

4.1 Motivation ... 67

4.2 Interview ... 67

4.3 Definition of subjects .. 70

4.4 Interview results .. 70

4.4.1 Design process .. 71

4.4.2 Interpretation of requirements .. 72

4.4.3 Verification .. 79

4.4.4 Requirement classification .. 79

4.4.5 Automation of translation procedure ... 80

5 Model ... 83

5.1 Method .. 83

5.1.1 Evolutionary prototyping .. 83

5.1.2 System requirements .. 85

5.2 Use Case(s) .. 86

5.2.1 Use case 1: TRANSLATE ... 86

5.2.2 Use case 2: Database Manager BOK ... 88

5.3 Prototyping process .. 90

5.4 System operational functionality .. 92

6 Results .. 95

6.1.1 The Bank of Knowledge application .. 95

6.1.2 The Graphical User Interface .. 95

6.1.3 Lexical analysis .. 96

6.1.4 Word enrichment .. 96

6.1.5 Word allocation ... 97

6.1.6 Requirement specification .. 98

6.1.7 Database and input ... 99

7 Procedures for system use.. 105

7.1 Procedure for the translation of a mono-disciplinary requirement, Use case 1: TRANSLATE. 105

7.2 Procedure for the translation of a non-functional requirement, Use case 1: TRANSLATE. 110

5

7.3 Procedure for database management, Use case 2: Database Management. ... 114

8 Conclusion ... 127

9 Recommendations ... 135

9.1 Recommendations for implementation .. 135

9.2 Recommendations for future research & development ... 136

10 References ... 139

11 Appendices .. 145

11.1 Appendix A: Program design ... 145

11.1.1 building.BufferedReaderPlus .. 146

11.1.2 building.log.Log ... 148

11.1.3 building.GenerateDesign .. 148

11.1.4 building.WordDef ... 149

11.1.5 building.Advisor .. 150

11.1.6 building.editor.DefFileEditor .. 156

11.1.7 building.editor.Sort ... 160

11.1.8 building.editor.Def .. 161

11.1.9 building.editor.WordCell .. 162

11.1.10 buidling.editor.WordCellGroup .. 163

11.2 Appendix A: building.BufferedReaderPlus .. 165

11.3 Appendix B: building.log.Log ... 173

11.4 Appendix C: building.GenerateDesign ... 174

11.5 Appendix D: building.WordDef.. 178

11.6 Appendix E: building.Advisor ... 179

11.7 Appendix F: building.editor.DefFileEditor ... 182

11.8 Appendix G: building.editor.Def .. 201

11.9 Appendix H: building.editor.Sort ... 206

11.10 Appendix I: building.editor.WordCell .. 211

11.11 Appendix J: building.editor.WordCellGroup ... 214

6

This page is intentionally left blank

7

1. Glossary

1.1 List of figures

Figure 1: Research model. ... 28

Figure 2: Project life cycle of a construction project with the project phases based upon BNA et al., 2009; Eadie, Browne,

Odeyinka, Mckeown, & McNiff, 2013; Nederlands Normalisatie-instituut, 1993. .. 33

Figure 3: Iterative character during the design phase (Moonen, 2016) ... 34

Figure 4: Macleamy Curve (Lu, Fung, Liang & Rowlinson, 2015). ... 35

Figure 5: Interaction between requirements and design solutions. .. 36

Figure 6: Systems engineering process (US de partment of defense, 2001)... 41

Figure 7: V-Model Systems engineering process extended, based on (Moonen, 2016; BAMinfra, 2008; INCOSE, 2015;

Werkgroep Leidraad Systems Engineering, 2007). .. 42

Figure 8: Interaction in design process, based upon Schaap et al., 2008. .. 43

Figure 9: Hierarchy of client needs, based upon (Walraven & de Vries, 2009). .. 45

Figure 10: Interaction between information in requirements and objects (Moonen, 2016). 48

Figure 11: Requirement type classification (Moonen, 2016). .. 49

Figure 12: Essence of the verification process (Moonen, 2016). ... 50

Figure 13: Activity diagram 1: The interpretation, translation and verification process. .. 74

Figure 14: Activity diagram 2: Assessing requirements on SMART principle. ... 75

Figure 15: Activity diagram 2.1: Dissection of requirement into interfaces... 76

Figure 16: Activity diagram 3: Verification planning ... 77

Figure 17: Activity diagram 4: Verification .. 78

Figure 18: Evolutionary prototyping process. ... 84

Figure 19: Use case 1, use case diagram: TRANSLATE, Bank of Knowledge. ... 86

Figure 20: Use case 1, Activity diagram: TRANSLATE, Bank of Knowledge. .. 87

Figure 21: Use case 2, use case diagram: Database Manager BOK. ... 88

Figure 22: Use case 2, Activity diagram: Database Manager BOK .. 89

Figure 23: The graphical user interface of the Bank of Knowledge system (Use case 1). .. 95

Figure 24: Tokenization of word, definition(s), class(es) and specification(s)... 99

Figure 25: The graphical user interface of the ‘Database Manager BOK’ (Use case 2). ... 100

Figure 26: The variety of definition domains for word(s) enrichment. .. 101

Figure 27: The variety of predefined classes as a function of the SBS. ... 101

Figure 28: The structure of a specification. .. 101

Figure 29: Fundamental structure of an enriched token. .. 102

file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112462
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112463
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112463
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112464
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112465
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112466
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112466
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112467
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112467
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112466
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112468
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112469
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112470
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112471
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112475
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112476
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112477
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112498
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112499
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112500
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112501
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112502
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112503
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112504
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112506
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112507
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112508
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112509
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112510
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112511
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112512

8

Figure 30: Data structure within the database. .. 102

Figure 31: Formal representation of a token within the database. .. 102

Figure 32: Formal representation of a token enriched with HTML web links. .. 103

Figure 33: Input of a mono-disciplinary requirement within the ‘requirement input field’ 105

Figure 34: The enriched representation of the obtained words within the ‘word enrichment’ field… 106

Figure 35: The definition of the word ‘smoke detector’, within the ‘word enrichment field’, is defined by means of a

Web Based thesaurus (Art & Architecture Thesaurus, 2017). This knowledge is captured within the system its database.

 ... 107

Figure 36: The definition of the word ‘equivalent’, within the ‘word enrichment field’, is defined by means of a Web

Based thesaurus (Visuwords WordNet, Princeton 2017). This knowledge is captured within the system its database.

 ... 107

Figure 37: The allocation of the word ‘Siemens fd0221’ and ‘equivalent’ on a subsystem level within the SBS according

to the NL-SfB as presented within the ‘word to object allocation’ field. Here, both ‘Siemens fd0221’ and ‘equivalent’

are allocated to the NL-SfB class no. 60. The specification of the ‘Siemens fd0221’ is expressed by the HTML link named

as ‘initial product specification’, and ‘equivalent’ is expressed in specifications as obtained from ‘Vendor A’ – ‘Vendor

B’ – and ‘Vendor C’ that deliver product with the same specification or better. .. 108

Figure 38: The valid product specification that communicate the product performance’s as obtained from the vendor’s

website which are provided within the ‘word to object allocation specification’ column as a web link (figure X). .. 109

Figure 39: Input of a non-functional, somehow fuzzy, requirement within the ‘requirement input field’. 110

Figure 40: The enriched representation of the obtained words within the ‘word enrichment’

field……….……… 111

Figure 41: The allocation of the word ‘warm’ as obtained from the non-functional requirement on a subsystem level.

In this example, ‘warm’ has been automatically allocated to ‘40-Finishing’, 50-Services mainly mechanical, and 60-

services mainly electrical within the SBS within the ‘NL-SfB classification’ field. .. 112

Figure 42: The valid product specification that communicate the product performance’s obtained systems database

which are provided within the ‘word to object allocation specification’ (figure

X)……. 113

Figure 43: The descriptions of the operational functionality that are accommodated within the graphical user interface

of the ‘Database Manager BOK’ (Use case 2). ... 114

Figure 44: The fundamental ‘linguistic definition’ of the token ‘cold’. ... 115

Figure 45: The allocation of the ‘token’ on a system level by means of a ‘NL-SfB class’ and its ‘NL-SfB class definition’

 ... 116

Figure 46: The allocation of the ‘token’, with the word ‘cold, on a system level by means of a second ‘NL-SfB class’ and

its ‘NL-SfB class definition’ do declare ambiguity regarding the definition and interpretation of the word ‘cold’. .. 117

Figure 47: The ‘specification’ of the token in terms of ‘product performances’. .. 118

Figure 48: The translation of the token ‘cold’ in product specifications by means of the BOK system.

 ... 119

Figure 49: The findings of the ‘google search engine’ after entering the search keys ‘warm room colors’. 120

Figure 50: Fragment of the findings of the google search on the keyword ‘Banana’, very small sample size. Here, we

will not find apples or peaches within its findings... 121

file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112513
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112514
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112515
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112516
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112517
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112519
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112519
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112519
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112520
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112520
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112520
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112521
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112521
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112521
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112521
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112521
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112525
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112525
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112526
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112527
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112527
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112531
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112531
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112531
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112533
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112533
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112533
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112534
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112534
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112535
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112536
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112536
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112537
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112537
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112538
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112539
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112539
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112540
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112541
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112541

9

Figure 51: Fragment of the findings of the google search on the keyword ‘Rectangular’, very small sample size. Here,

we will not find circles or triangles within the findings. .. 121

Figure 52: The findings of the ‘google search engine’ after entering the search keys ‘warm room colors’. 122

Figure 53: Photo sample as obtained from the google search on ‘warm room colors’. .. 122

Figure 54: Extracting a color sample of the obtained picture to capture knowledge on colors that have been defined by

individuals on the globe as ‘warm room colors’. ... 123

Figure 55: The color sample that defines ‘warm room colors’ in terms of TIH and RGB specifications. These

specifications can be converted to any kind of color scales that product manufacturers use. 123

Figure 56: The final representation of the mono-disciplinary requirement, the specification, is stated within the ‘word

to object allocation specification’ screen. .. 124

Figure 57: UML class diagram of the system .. 101

file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112542
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112542
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112543
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112544
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112545
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112545
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112546
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112546
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112547
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112547
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_LASTROUND.docx%23_Toc503112511

10

1.2 List of tables

Table 1: Typ of requirements based upon (Schneider & Berenbach, 2013). .. 45

Table 2: Description of analyzed projects (Moonen, 2016). .. 49

Table 3: Data analysis outcome (Moonen, 2016). ... 49

Table 4: SECI model of knowledge conversion (Nonaka, 1991). .. 57

Table 5: Use case 1: Use case text; Translation of (fuzzy) requirement. .. 87

Table 6: Use case 2: Use case text; CRUD (Create – Read – Update – Delete).. 89

file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_CONCEPT.docx%23_Toc500184769
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_CONCEPT.docx%23_Toc500184771
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_CONCEPT.docx%23_Toc500184773
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_CONCEPT.docx%23_Toc500184777
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_CONCEPT.docx%23_Toc500184790
file:///C:/Users/WorldExplorer/Desktop/MASTER%20CME/Quartile%204%20-%202/Reporting%20stage/REPORT%20PIECES/GraduationReport_CME_Sudent_0831557_Masoud_Delghandi_CONCEPT.docx%23_Toc500184792

11

1.3 List of abbreviations

3D three dimensional

AEC Architecture, Engineering and Construction

BDA Big Data Analytics

BDE Big Data Engineering

BIM Building Information Modelling

BNA Bond Nederlandse Architecten

CAD Computer Aided Design

CB-NL Nederlandse Concepten Bibliotheek voor de bouw

CROW
Centrum voor Regelgeving en Onderzoek in Grond-, Water-, en Wegenbouw en
de Verkeerstechniek

CSV Comma Separated Values

DBFMO Design Build Finance Maintain Operate

DM Design Management

D&E Designers and Engineers

ES Expert System

FBS Function Breakdown Structure

GUI Graphical User Interface

IC Integrated Contract

ICT Information and Communication Technology

IFC Industry Foundation Classes

INCOSE International Council on Systems Engineering

ISO International Organization for Standardization

KBS Knowledge Based System

KDD Knowledge Discovery in Database

KM Knowledge Management

LOD Level of Detail

ML Machine Learning

NEN Normalisatie en Normen

NL-SfB Elementenmethoden

OBS Object Breakdown Structure

OTL Object Type Library

SBS System Breakdown Structure

SE Systems Engineering

SMART Specific, Measurable, Attainable, Realizable and Time bounded

SUHA Simple Uniform Hashing Assumption

UAC-IC 2005 Uniformed Administrative Conditions for Integrated Contracts

UAV-GC 2005 Uniforme Administratieve Voorwaarden voor Geïntegreerde Contracten

UI User Interface

12

This page is intentionally left blank

13

The translation of ambiguous client requirements into product specifications

Masoud Delghandi
Construction Management and Engineering, Eindhoven University of Technology

Keywords: Building Information Management, Requirement Management and Engineering, Design
Management, Systems Engineering, Client specific requirements, Physical requirements,
Functional requirements, Non-functional requirements, Automation in construction.

Abstract
The rising complexity of demand specifications formulated by unprofessional clients within the
AEC-industry induces Designers and Engineers (D&E) to adjust their strategies in regards to Design
Management (DM). Inexperienced clients are often not technically skilled. This makes it very hard
to capture the right interpretation of the client’s intentions for a specific requirement by D&E prior
to the formulation of product specifications that satisfy the demand. This research focuses on the
translation procedures of quantitative and qualitative client specific requirements into product
specifications for conceptual design stages. The objective of this research initiative is to explore the
possibilities to introduce automation as a technique to optimize these reoccurring translation
procedures in regards to effectiveness and efficiency.

Within this research, a literature study was conducted on the topics of the design process, Systems
engineering, Knowledge Management and Natural Language Constraints. The findings from the
review of literature were merged with the observations obtained from interviews held with
specialists from the field of Systems Engineering. Based on the findings from these methods, a
methodology has been developed. This method has been accommodated by means of an
evolutionary prototyping process within a software program, named as ‘The Bank of Knowledge’.
This program, on the one hand, accommodates a method that can translate both quantitative and
qualitative client requirements into product specifications by means of automation. On the other
hand, this program provides a digital environment in which words that are extracted from client
requirements can be stored in a structured way within databases for future use.

This research concludes that the eventual way of designing a more advanced and intelligent
automated translation system is heavily depending on input such as: the formal language in which
requirements are specified, the standardization of concepts in a domain specific language, and
databases in which information and data in regards to client specific requirements has been
captured. This research also contributed by concluding a set of preconditions for the automation
of a more advanced and intelligent system: the operational functions such as Create, Read, Update
and Delete (CRUD) need to be accommodated, the system needs to automatically store enriched
words by means of a formal notation and standardized concepts, the system is required to
automatically equate and allocate the enriched words on a system level, the system needs to
automatically capture and distinguish definitions of the obtained words in relation to acting
disciplines in order to formulate a product specification, the system needs to run on databases that
contain valid knowledge obtained from a variety of projects as delivered in the past.

14

This page is intentionally left blank

15

Summary

The increasing complexity of the demand placed by clients in the construction industry nowadays, requires
a different approach for contracting parties for the right translation from client specific requirements into
product specifications. The increasing complexity of projects within the construction industry is also partly
related to the amendments in obligations of contracting parties. These changes stem from the variety of
integrated contract forms, in which contracting parties not only sign for manufacturing of design, but also
for design and design management. Inexperienced clients are often not technically skilled. This makes it very
difficult for this party to communicate the right performances of their desired product. There has been
found in practice that this is mainly occurring in case of softer product requirements which are often
qualitative from nature. This in contrast to the class of physical and functional requirements that are more
quantitative.

A client’s brief that consists of ambiguous demand specifications can often lead to misinterpretations for
contracting parties. As a result, large deviations can arise in what clients expect, compared to what
contracting parties think they have to deliver. This can have catastrophic consequences, assuming that clear
agreements are missing during the early design stages about what is desired and what can be delivered.
These consequences express their self in ambiguities during the design process that may result in the
delivery of a defective product. These types of problems can often arise within processes in which product
requirements are specified, translated and configured. There are various methods and techniques in use
within the AEC-domain to capture client specific requirements systematically, efficiently and effectively as
possible at an early stage. These strategies and tactics are introduced within these stages to reduce the
changes of the revisions on the demand specification during later design stages.

This research focuses on the translation of client specific requirements into product specifications before
and during the conceptual design phase. The objective of this research is to explore the possibility of
introducing and implementing automation as a technique to optimize these processes with respect to
efficiency. One of the main goals of this research is to optimize these translation procedures and to declare
the level of ambiguity within client specific requirements. This especially in the case of soft product
requirements, the non-functional requirements, which are often more qualitative from nature. These
qualitative requirements are known to be difficult to interpret and to specify, contrary to quantitative
requirements. This can partly be explained by the fact that there are no standards in what concepts within
demand specifications actually imply, and how this relates in detail to design decisions at a system level.
Ambiguity may result from this, which might reflect itself in an end product that deviates from the clients
initial requirements.

Based on this problem definition, the main research question was formulated: “How can the translation
process of non-functional requirements be structured and automated to formulate product specifications
in the design process”? To formulate valid answers to this research question, a literature study was
conducted on the design process, Systems engineering, Knowledge Management and Natural Language
Constraints. The findings from the literature research were combined with the knowledge obtained from
interviews that were held with specialists from the field of Systems Engineering. This with the aim to analyze
how professionals deal with this problem in a practical environment. Based on the findings from these
approaches, a prototypical program has been developed to test the knowledge.

The result of this research relates to a prototypical program. This program, on the one hand, accommodates
a method that can translate both quantitative and qualitative client requirements into product

16

specifications. On the other hand, this program provides a digital environment in which words that are
extracted from client requirements can be stored in a structured way for future use. The translation
program, called 'The Bank of Knowledge', is intended to be used by designers and engineers as a decision
support tool, to optimize the translation procedure of customer requirements into product specifications in
terms of efficiency and effectiveness. The ‘Database Manager Bank of Knowledge (BOK)’ has been
developed as a technique for specialized companies for the translation, structuring and storage of building
information and data according to domain related terminology. This information and data can be integrated
into a structured database that can be ingested by the 'The Bank of Knowledge' application.

This research has found that requirement translations into product specifications could be automated if the
following input can be provided to feed computer based systems:

1) Validated interpretations of requirement with clients and users as obtained from previous projects;
2) Availability of a set of dissected requirements, as programmed in previous projects, that are

represented in a measurable state;
3) The allocation of requirements and objects, as done in previous projects;

The eventual way of designing a more advanced and intelligent automated translation system is found as a
byproduct of this research initiative. This, especially with the findings during the evolutionary prototyping
process. These fundamental system requirements for such systems are summarized as follows:

1) Fundamental operational functions such as Create, Read, Update and Delete (CRUD), need to be
accommodated within such systems;

2) Such systems need to be capable to run automated lexical analysis to dissect the linguistic chunks
of text obtained from a client’s brief;

3) Such systems need to be able to automatically store enriched words by means of a formal notation,
as obtained from the dissected text, by means of standardized concepts to formulate the possible
meaning(s) of the word within a sentence;

4) Such systems need to be able to automatically equate and allocate the enriched words in relation
to the subsystems by means of a standard system distributions, such as the NL/SfB that is used
within this prototyping attempt;

5) Such systems need to automatically capture and distinguish the translation of the definitions of the
obtained words in relation to other acting disciplines, assuming that these definitions can vary;

6) Such systems need to automatically capture the final specification of the word(s) to formulate a
product specification that satisfies the initial requirement;

7) Such systems need to run on databases that are filled with valid and state of the art knowledge
obtained from a variety of projects as delivered in the past.

17

Samenvatting
De toenemende complexiteit van de vraag die door opdrachtgevers in de bouwindustrie wordt geplaatst,

vergt hedendaags een andere benadering van opdrachtnemende partijen om de juiste vertaalslag van

klantwensen naar productspecificaties te kunnen maken. De toenemende complexiteit van projecten

binnen de bouwnijverheid hangt ook deels samen met de hervormingen in verplichtingen van opdracht-

nemende partijen. Deze wijzigingen komen voort uit de verscheidenheid aan geïntegreerde contractvormen

waarbij opdrachtnemende partijen niet alleen tekenen voor het ontwerp zelf, maar ook voor het

ontwerpproces en de procesbeheersing daarvan. Doordat onervaren opdrachtgevende partijen vaak niet

technisch onderlegd zijn, kunnen er problemen ontstaan tijdens de communicatie van de juiste specificaties

van het door hen gewenste product. Dit is een fenomeen dat zich vooral voordoet in de groep van de

zachtere producteisen, in tegenstelling tot de klasse van de eisen die numeriek uit te drukken zijn.

Een onvolledig gespecificeerde vraag kan vaak leiden tot misinterpretaties bij de opdrachtnemende partijen.

Hierdoor kunnen grote afwijkingen ontstaan in wat opdrachtgevers willen, vergeleken met wat

opdrachtnemende partijen denken te moeten leveren. Als er niet gedurende de initiële ontwerpstadia

duidelijke overeenstemmingen geformuleerd worden over wat gewenst is en wat geleverd kan worden dan

kan dit catastrofale gevolgen hebben. Deze gevolgen uiten zich in onduidelijkheden gedurende het

ontwerpproces die mogelijk leiden in een gebrekkig opgeleverd product. Problemen kunnen hierdoor vaak

ontstaan binnen processen waarin product eisen gespecificeerd, vertaald en geconfigureerd worden. Er

worden binnen de bouwindustrie vele methoden en technieken toegepast om de wensen van de klant

vroegtijdig zo systematisch, efficiënt en effectief mogelijk vast te leggen. Dit wordt gedaan zodat er later

geen revisies doorgevoerd hoeven te worden in de programmering van de daadwerkelijke vraag tijdens de

verschillende ontwerpfasen.

Dit onderzoek richt zich op de vertaalslag van klantwensen naar productspecificaties voorgaand en tijdens

de schets ontwerpfase. Dit met als doel automatisering te introduceren als techniek om deze processen te

optimaliseren ten aanzien van efficiency. Eén van de voornaamste doelen van dit onderzoek is om deze

vertaalslag te optimaliseren ten aanzien van eenduidigheid. Dit voornamelijk voor de zachtere eisen die niet

direct numeriek uit te drukken zijn. Deze kwalitatieve eisen zijn in tegenstelling tot kwantitatieve eisen

lastiger te interpreteren en te specificeren. Dit kan deels verklaard worden doordat er geen

gestandaardiseerde opvattingen zijn over wat voorkomende concepten binnen vraagspecificaties

daadwerkelijk impliceren, en hoe dit zich gedetailleerd kan verhouden tot ontwerpbesluiten op systeem-

niveau. Hieruit kan ambiguïteit voortvloeien waardoor de wens van de opdrachtgever (wellicht) niet

gerealiseerd zal worden.

Op basis van deze probleemstelling is de hoofdonderzoeksvraag opgesteld: “Kan de vertaalslag van niet-

functionele eisen zo worden gestructureerd en geautomatiseerd, dat er productspecificaties geformuleerd

kunnen worden binnen het ontwerpproces”? Om geldige antwoorden op deze onderzoeksvraag te

formuleren is er een literatuurstudie uitgevoerd over het ontwerpproces, Systems engineering, Kennis

Management en Randvoorwaarden uit natuurlijke taal. De bevindingen vanuit het literatuur onderzoek zijn

gecombineerd met de kennis die is gevonden vanuit interviews die zijn gehouden met specialisten vanuit

het domein van Systems Engineering. Dit met als doel om meetbaar te maken hoe professionals omgaan

met deze problematiek in een praktische omgeving. Op basis van de bevindingen in deze benaderingen is

er een prototypisch programma ontwikkeld om de kennis te testen.

18

Het resultaat van dit onderzoek verhoudt zich tot een prototypisch programma. Dit programma

accommodeert enerzijds een methodiek die de vertaalslag van zowel kwantitatieve als kwalitatieve klant-

eisen kan vertalen in productspecificaties. Anderzijds levert dit programma een digitale omgeving waarmee

woorden die onttrokken zijn vanuit klanteisen gestructureerd vastgelegd en opgeslagen kunnen worden

voor toekomstig gebruik. Het vertaalde programma, genaamd ‘The Bank of Knowledge’ (De Bank van

Kennis), is bedoeld om ingezet te worden door ontwerpers als ondersteunende techniek om de vertaalslag

van klanteisen in product specificaties zo efficiënt en effectief mogelijk te maken. Daarbij is de ‘Database

Manager Bank of Knowledge (BOK)” ontwikkeld als techniek voor gespecialiseerde bedrijven voor de

vertaling, structurering en opslag van informatie en data over domein gerelateerde terminologie. Deze

informatie en data kan geïntegreerd worden in een gestructureerde database die gekoppeld kan worden

aan ‘The Bank of Knowledge’ applicatie.

Dit onderzoek heeft bevonden dat de vertaalslag van specifieke klant eisen in product specificaties

gestructureerd en geautomatiseerd kan worden indien een programma beschikt over de volgende input:

1) Gevalideerde interpretaties van klanten en gebruikers met betrekking tot concepten

2) De beschikbaarheid van een ontlede set aan eisen die zijn vertaald in meetbare gegevens

3) De toekenning van eisen aan objecten binnen een gebouw ontwerp (BIM model)

Dit onderzoek toont ook aan dat de ontwikkeling van een intelligent geavanceerd geautomatiseerd vertaling
system gerealiseerd kan worden indien aan de volgende eisen voldaan kan worden:

1) Fundamentele operationele functies zoals de Creatie, Inlezen, Wijzigen en Verwijderen van
informatie en data geaccommodeerd zijn in het programma

2) Tekst geautomatiseerd ingelezen en ontleed kan worden
3) Woorden vanuit de zinnen herkent en verrijkt worden door middel van gestandaardiseerde

concepten die geautomatiseerd vast gelegd kunnen worden met behulp van een formele notatie in
een database

4) Verrijkte woorden vanuit een specifieke eis geautomatiseerd toegekend kunnen worden aan een
gebouwonderdeel door middel van een specifieke gebouw classificatie methode

5) De (meervoudige) betekenis van woorden vanuit een specifieke eis onderscheiden, vertaald en
toegekend kan worden aan actoren

6) De daadwerkelijke definitie van de woorden vastgelegd kan worden om zodoende een product
specificatie te kunnen formuleren die de initiële eis bevredigd

7) Een database geïntegreerd is die bestaat uit betrouwbare informatie waarop het systeem rust

19

2 Introduction
The complexity of the projects within the architecture, engineering, and construction industry

(AEC-industry) is increasing rapidly in this modern era. This increased technological degree where

the contractors, Designers and Engineers (D&E) are faced with, can (partly) be explained by the

variety of predefined building requirement as a function of the demand specification. The difficulty

of the project within the AEC-industry has also increased over the years due to changes in the

responsibilities and liabilities of the parties involved (Chao-Duivis, 2017). Their participation within

the projects commands a methodical justification of the demand specification as specified by the

clients (Lenferink, Tillema, & Arts 2013). Translating the variety of requirements into product

specifications is a complex task, especially if little information is available and numerous aspects

need to be reconsidered during the early design stages. The impact of design decisions taken within

the earliest design stages affect the product its final configuration the most (Aliakseyeu, 2003). This

complexity induces the AEC-industry of an integral way of working, more than ever, to adapt and

react to the market demand as early as possible. This approach must lead on one hand to a possible

reduction of time during design processes, and an increase of quality by product design on the

other hand (Abanda, Zhou, Tah, &Cheung, 2013). Coping with such market conditions is from great

importance, especially when the contractor is responsible and liable for both product design and

its manufacturing. This form of contracting yields from test projects that are initiated and executed

under the UAC-IC 2005 by the realization of Civil works within the Dutch construction industry

(Chao-Duivis, 2017).

To attain this higher quality in both product and process design, processual strategies and

techniques might need to be adjusted to harmonize and safeguard process and product

performances. The information in requirements interacts greatly within the verification processes.

Within the verification processes, the design is tested on the compliance with the initial

requirements as stated within the initial demand specification. These processes are very time

consuming and failure sensitive. This failure sensitivity gets emphasized especially if numerous

ambiguous requirements have been specified by the client. The employee needs to be able to

justify the processual steps that are taken during the translation procedure of linguistic chunks of

text (the requirement) into product design (specifications). This might be an achievable task in

scenarios where unambiguous requirements have been contracted. However, this translation

procedure can get very critical when non-functional requirements are contracted. This, especially

when the contractor has little or few experience with aspects such as the type of product, design,

design management and systems engineering. Within this research, there will be studied upon the

characteristics of client specific requirements in order to relate the knowledge that is required for

the translations into product specifications.

Therefore, the research of user and client interaction, requirement management and (automated)

constraint checking of building information has come forward. This fields of research mostly aims

for a reduction of project variance on one hand, and to increase a higher product quality at the

20

other hand. The process of user client interaction, requirement management and rule checking is

researched upon greatly given the current market conditions. Client demands are nowadays often

known to be complex from nature due to the high product performances that these parties aim

for. This might lead to problems during design and manufacturing given the fact that not all

designers and manufacturers are experienced with certain demands. The profits that contractors

are gaining from moderate projects is not that high. This forces contractors to pay attention to the

development of these aspects given the risks that they are taking by contracting complex demand

specifications where they are unfamiliar with. There is a clear borderline between taking risks as a

contractor or a gamble. Within this research, there shall be researched upon the possibility to

introduce a certain Design and Decision Support System (DDSS) for the translation processes for

client specific requirements as provided by unprofessional clients in demand specifications.

2.1 Motivation
Managing the compliance and performances of client specific requirements has grown with the

introduction of integrated contracts (UAC-IC) within the building industry. This form of contracting

is known to be used for contracting Civil works within the Dutch construction industry since 2000

(Chao-Duivis, 2017). There have been numerous (test) projects, mostly Civil works, that are

contracted according to this contract from between the year 2000 and 2017. These type of

contracts have resulted in an alteration of responsibilities and liabilities within design processes

(Lenferink et al., 2013). This shift has contributed to a higher responsibility of the contractor

(employee) during the overall construction process. Despite the traditional way of working of

contractor (built as designed), this type of contracts force the contractor for transparency of the

performance of a design both during the design stages as in the usage phase. There might be

assume that having a design that fully complies with the requirements before a building is

manufactured, might yield in a decrease of the failure costs and improvement of the quality for

both the client and the end user (Moonen, 2016).

The management of the client specific requirements remains very difficult given the fact that a

client might not know exactly what he wants at the very beginning of a project (Moonen, 2016).

This might yield in ambiguous defined product requirements that are hard to translate into product

specifications on a system level (the building). Defining a valid model before it is realized might

therefor be a very difficult task since clients are known to define their need iteratively by evaluating

and updating their requirements rather than narrowing them down initially (Kim, Kim, Cha, &

Fischer 2015). Therefore, contractors should be adaptable to this iterative character and manage

the requirements in a very sophisticated way (Moonen, 2016). A contractor should be able to

determine the ranges in which design decisions should be taken. These ranges state the bandwidth

of decisions that other designing parties that are involved should be taken. These ranges reflect

the specific goals that contribute to the performance of their products in compliance with the initial

requirements. Currently, the management of requirements remains a manual process. This process

requires a lot of investigation on the information about requirements and the design (Moonen,

21

2016). These are very critical and laborious processes. The gained information from the projects as

executed in the past might be stored in databases. However, the usability of this type of

information relies on the data structure, the technique in which the data is stored and how users

can possibly consult the specific data. The information from these databases require a lot of effort

by converting them to useable input on their own. Investigating this area is there for a sport in its

own. Researching how this information should be documented, enriched and stored is there for

from great importance in both its practical as scientific contribution. The usage of this information

and data for the translation of requirements into product specification will improve the efficiency

and quality during successive design and manufacturing stages.

Predictions on the configuration of subsystems within the earliest design stages, as derived from

the demand specification, seems to be a very complex task. This complexity increases especially by

scarce ambiguous information and data on product requirements as provided by the

unprofessional client. The constraints that result from these linguistic chunks of text affect the

product configuration. It is a complex task to derive the right information from requirements,

especially if they are formulated in an ambiguous state. A designing party has a lot to do with

constraints. Within all these constraints there will be approximately 15% of freedom, the other

85% should translate the client’s needs (Gehry, 2017). The AEC-domain is lagging behind of

implementing methodologies that promote logging and storage building information according to

unambiguous standards as a function of time (CB-NL, 2015). These methodologies might be

introduced and dictated by clients, but are not safeguarded on a practical level by the contractors.

This events might provoke complex court cases.

Using building information and data as generated from previous projects might promote the

unfavorable conditions in which design and manufacturing’s decisions are taken within the AEC-

domain. Dutch organizations, such as the Instituut van Bouwrecht (IBR) or the Centrum voor

Regelgeving en Onderzoek in de Grond-, Water- en wegenbouw en verkeersvoorzieningen (CROW)

that are concerned with the problems that correspond with the translation procedures of non-

functional requirements haven’t found a formal standardized way in which these can be treated.

However, there needs to be mentioned that these institutions are providing guidelines as a support

tool. Still, these are not mandatory to use in practice. Whenever these defaults within the

translation processes are analyzed in both a practical as scientific way; then statements about

automation can be formulated in regards to developments of (semi) automated tooling.

Thus, the complex set of requirements that are included in the demand specification as presented

by the unprofessional clients might be causing the urged need for expert systems. These systems

could possibly affect the design stages positively. The world counts an almost infinite amount of

real estate wherefrom its information is lost. This is a pity since this type of building information

can be re-used for numerous applications within the field of design and decision making. These

systems could be filled with these type of building information and data. These tools can be

introduced as design and decision support tool by product design within the early design stages

22

where little information and data is available. Within these early design stages, certain experts

systems (ES) or knowledge based system (KBS) can be consulted for queries on the translation

processes as logged from the past. The introduction of such tools could clarify and discard design

contradictions to reduce the risks and defaults in successive processes. The current techniques that

are used within the AEC domain during the translation of product requirements into product

specifications are executed manually rather than automated (Niemeijer, 2011).

2.2 Problem definition
The interpretation and translation of client specific requirements into product specifications prior

and during early design stages of complex building projects is a very critical phase. Programming a

design with the initial requirements, as stated from the demand specification, can be a laborious

task. The eventual conformity towards client specific requirements is of great importance to

safeguard the functionality and the performance of a product. If a contractor remains in default by

non-compliancy towards these requirements he might be held liable and fined. These costs mostly

correspond with extensive additional project costs and extended project durations. Both of these

negative events might harm the integrity of a contractor within his field of business. There are

numerous court cases held on these issues where the client has not got delivered, in his or her

experience, of what he or she asked for.

The fact that there are no standards, only guidelines, in which requirements have to be specified

by unprofessional clients might make the journey to unambiguity in demand specifications even

tougher. This affects the complexity by managing the compliancy towards requirements in the

design process, especially by non-functional requirements. Here, within this research, we assume

the following definition of an unprofessional client: a client that is untrained, unfamiliar, and

unqualified for programming and governance of the design and manufacturing processes that

contribute to product delivery”. This definition implies that the client’s liability and obligations are

only rooted in the development of the client’s brief which result in the demand specification.

There is no formal method in which non-functional requirements can be interpreted, translated

and specified. This offers the opportunity to improve this process within the design phase. This can

be promoted by means of an exploration towards a methodology and technique that can

accommodate this need. There are currently no databases which can be consulted for queries on

the translation of non-functional requirements. These are not available in companies, nor in

literature nor on the World Wide Web. These techniques might be beneficial for the design process

by defining this information only once, capturing its enriched form, and translating this in to

reusable information. These systems could create managerial edges since knowledge gets

produced, captured and evaluated.

The main problem that is investigated in this research can be found in Building Information
Management. More specific, Building Information Management during early design stages where
translations are executed from client specific requirements obtained from clients briefs into to
product specifications. These procedures are currently known to be executed manually, to be time

23

consuming, and error prone. These processes are assumed to be very profitable on the long run if
executed accurately, given the simple fact that tenders can be won if products are configured
within the holistic ranges as client’s desire. A lot of knowledge is required for this type of decision
making by uncertainty and a scarcity of accurate information. Capturing the specific knowledge in
a knowledge based systems isn’t happening in the AEC industry yet. This makes a specific demand
a unique design task each time.

2.3 Research scope
The research scope will be demarcated within this section to clarify the specific intention of this

research initiative in regards to both its practical and scientific contribution. This is from great

importance to prove the effectiveness and efficiency of automation by both electronic requirement

management and translation procedures. This, especially for the purpose of knowledge capturing

as a function of time.

This research focuses on the translation of non-functional requirements obtained from the client’s

brief. The class of physical and functional requirements will be introduced to demonstrate how this

translation procedure differs from the class of non-functional requirements. Here, a case study will

be introduced wherefrom a case model will be derived. This scope has been chosen for evaluation

as there is a vast amount of these types of requirements that are contracted which are not

integrated or even treated by building design. This might make contracting an even risk fuller

business than it currently is.

Non-functional requirements are also the type of product requirements that might require a

holistic approach by programming their specifications. A room, for instance, can be configured by

requirements that need to be specified from the disciplines such as architecture, structural-,

electrical-, mechanical engineering and building physics. More specific, requirements from all

parties involved within a designing line-up might contribute to the satisfaction of a certain non-

functional requirements at once.

If we take a closer look to the following non-functional requirement: “The room needs to withhold

a cozy atmosphere”; it might be though to derive which parties needs to take which actions. This

process could be a very complex and laborious task. Within this research project we analyze the

impact of the architectural and building physical requirements in regards to the configuration of

the product specification. Here, there is assumed that if a single requirement can be distilled from

a non-functional requirement; the rest will follow as it is a matter of time. Distilling all product

specifications from a non-functional requirements in regards to all disciplines involved, in an

unambiguous form, is what there will be aimed for in the ideal situation.

This approach gives a good opportunity to evaluate the possibilities of using automation by

requirement translation processes. Within these processes there will be checked and tested how

automation can be introduced to promote efficiency and effectiveness to achieve greater and

unambiguous product specifications. This prototype is evaluated with a use case to define the

24

usability, efficiency, effectiveness and limitations of using automation for non-functional

requirements translation processes.

2.4 Importance
Research upon the possibility of semi-automated requirement translation is from great importance
as this can improve the early design process and the overall quality of a final product. This process
can discard ambiguity by the interpretation, translation, and specification of client specific
requirements which might prevent costly mistakes. Specifications are supposed to formulate a final
performance of a certain object within the building information model, yet, there is known that
not all specifications are deduced from requirements during early stages. This is often affecting the
performance of a certain element within a building. This implies that the desired product
performances are not covered by design. Clients want to invest in products in which performances
can be justified according to their initial demand. Things can go (badly) wrong for D&E, in terms of
finances and integrity, when decisions cannot be clarified during design stages and product
delivery.

Besides from building information management, the possibilities for automation of certain design
and manufacturing processes are of great importance to research upon as this might improve the
design process. The introduction of automation can discard a lot of repetitive administrative work
which will be minimized. Then, the focus can be brought upon other business process from a more
profitable nature. The investigation on automation for requirement translation procedures seems
a useful topic where business and quality improvement, assurance, and building information
management fuse. Especially, given the fact that there are no such systems in practice within the
AEC-domain, or offered by market, that accommodate these functions.

2.5 Related work
This research initiative is driven by the intention to contribute to the required knowledge for the
development of a prototypical (semi-automated) information system in which requirements can
be interpreted, translated, allocated, and specified during early design stages. This, with the
assumption of uncertainty by decision making due to the scarcity of building information in early
design stages. With this as given, there has been reviewed by means of a literature review and in-
house practices, on what previous researchers and practitioners have contributed to this domain.
The review of literature revealed the current status on which such techniques are introduced in
both the AEC domain and other industries. The in-house practices where used as a mean to
investigate, on a more practical level, to which extend experts from the field are familiar with such
techniques and information systems. The merged outcome of these to processes provided the
fundamental insight in the state of the art methods and techniques regarding this research
problem. There has been found that such information systems are not existing, both for the in AEC-
domain and other industries, in which requirements can be interpreted, translated, allocated and
specified. However, various methods and techniques as used in other industries could contribute
to the fundamental knowledge that is required for the development of such an information system.
To be more specific, several interesting methods and techniques in regards to the design process,

25

legal and governance, requirement management and engineering, linguistics, and data & text
mining have contributed to the required knowledge for the development of the prototype. This
implies the possibility to develop such a specific system by means of merging the knowledge due
to the findings as obtained from those processes.

Niemeijer (2011) contributed by his work on constraint specification in architecture. He identified
the variety of methods and techniques by the application of constraints as written in natural
language within the AEC-domain. He also revealed how both humans and computers could cope
with chunks of text as written in natural language. Niemeijer (2011) treated the relation between
client requirements and constraint specification for information systems within the AEC, which was
from great importance for this research. This due to the fact that a requirement can be assumed
to be compelled in constraints; and that a constraint is formulating a certain decision bandwidth.
However, his work emphasized constraint checking rather than constraint solving. In this research
we are fundamentally trying to solve a constraint which a requirement dictates, rather than
checking it afterwards. One can state that we are basically doing both, by solving the constraints
after translation in specification(s); and checking constraints during verification. One way or
another, Niemeijer (2011) contributed a lot by providing the state of the art knowledge in regards
to constraint specification in natural language for information systems within the AEC industry.

The fact is that there is aimed to shell a methodology in which requirements can be interpreted,
translated, allocated, specified, and stored as a function of a client demand to improve client /
designer interaction in early design stages. Therefore, a variety of traditional requirement
management methods as used in various (designing) industries, which are often not mentioned
within this report, have been reviewed upon in a practical setting to determine how the best of all
these approaches could be merged for use in such a (semi-automated) information system. There
has been reviewed on how the generic theorems are treating these translation procedures. Jallow
et. al (2017) published a paper in which they presented a first attempt for the development of ‘An
enterprise architecture framework for electronic requirement information management (eRIM)’
within the construction industry. Their work covered the fundamentals of the concept of
requirements management, traditional conventional requirement management models, and how
these both can be linked to Enterprise architecture (EA). Jallow et. al (2017) confirms the urged
need of such an information system, as aimed for in this research, by the following statement:
“Little research has advanced in requirements management in construction, and no known
development has been reported in the use of specialized software for requirements in construction.
Even where a system exists, an underlying framework must be available to specify how that system
should be used, factoring in the lifecycle phases & processes, information structure, information
flow within the organization, and the process for managing changes.” Jallow et. al (2017)
contributed a lot by their work in terms of knowledge and development to this domain, however,
even the eRIM system is not accommodating the functionality in which client specific requirements
can be interpreted, translated, allocated, specified, and stored.

26

2.6 Primary hypothesis & objective
In regards to the problems that occur for the translation of client specific requirements into product
specification, a prototypical information system will be developed which is user friendly to the
layman. The hypothesis of this research states that an automated translation tool will improve the
early design process. This with the assumption that the system is providing valid knowledge for the
translation of requirements into product specifications. The objective for the development of the
tool is to research whether valid knowledge from the past can contribute to the accuracy of
decision making for design. Such tool could support the determination process of ranges in which
design decisions should be taken. This development is initiated to overcome the time consuming,
failure sensitive manual process during early design to solve problems that are occurring during
current procedures. This could deliver a prototype which is based upon automated (web based)
lexical analysis of client specific requirements, (web based) word enrichment by state of the art
knowledge, word to (sub)system allocation, and product specification. This tool could capture and
store the obtained knowledge in its database, and be able to automatically expand as a function of
time. The captured knowledge within the system its database will grow, which implies that it shall
provide more and more knowledge during its reference period. This implies the usage of such
information system for other use cases as well, these will be discussed later this report.

2.7 Research questions
This section treats the research questions. These research questions are derived from the problem

definition and research scope. Within this research project, the main research question is:

“How can the translation process of non-functional requirements be structured and automated

to formulate product specifications in the design process?”

The main research question is divided into 6 sub questions to gain specific knowledge. These sub

questions are closely related to parts of the research design. These parts are the design process,

knowledge management and natural language constraint in Architecture, Engineering and

Construction (AEC).

The design process is evaluated with the aim to gain knowledge on Systems Engineering,

verification of requirements and the information exchange which is happening in the process.

Knowledge management is studied upon to measure the current state in which procedures are

standardized and formalized for capturing and storing data, information, and knowledge. Natural

language constraints in AEC are treated with a view to gain insight in the current state of the

methods and techniques in use for translating and processing chunks of fuzzy text into Domain

Specific Language (DSL). This is done to evaluate the possibilities to create an automated

knowledge based system that can be consulted by the translation of non-functional client specific

requirements. These three subjects lead to the following 6 sub questions:

1) What client specification procedures are there in use within the design process, and how

does Systems Engineering support these procedures?

27

2) What variety of client requirement types are known within the design process, and which

of these carry risk in terms of non-conformity?

3) What is the current practice in the AEC industry for translating client specific requirements

into product specification, and how do verification procedures safeguard these?

4) What can automation, for translating client requirements into product specifications,

contribute to the design process?

5) What are the current techniques within the AEC-domain, by means of automation, to

translate product requirements into product specifications?

6) Is it possible to develop a method that translates and stores physical, functional, and non-

functional requirements into product specifications by means of automation?

2.8 Research design
This research is structured by 3 parts that are closely related to the research questions. Figure 1

visualizes the path that this research project shall follow. All of the research question as mentioned

in the previous section are researched upon in two ways. Firstly by means of existing literature and

secondly with an evaluation of the current practice by interviewing experts from the industry. The

first part requires a theoretical research that will be executed. Here, a literature review will be

conducted on the main themes known as the design process, knowledge management and natural

language constraint in Architecture, Engineering and Construction (AEC).

The focus will rely on the use of Systems Engineering, the verification process, and requirement

management within the literature review of the design process. After the theoretical research, a

qualitative research upon the current practice will be executed. Interviews with experts that are

coping with the defined problems will be held to evaluate the design process and evaluate the

processes where (major) errors are occurring from. These findings will be used to evaluate how

automation can possibly counteract and support these processes. The same procedure will be used

for the second and third part of this research project. Within these parts, the current practices on

knowledge management within the AEC-industry along with natural language constraint in the

AEC-domain will be investigated. The conclusions of the interviews, along with the evaluation of

the literature, will be translated into the scope for the development of the prototypical

‘requirements translator’ and ‘database manager’.

To evaluate the possibilities for the development of a prototypical system in which requirements

can be translated, specified and stored, a selection in requirements will need to be made to define

the scope of this research. This will need to be done according to the various types of requirements.

These types are identified with an analysis of requirements databases as gained from existing

research projects. The applicability of the prototype will focus on the translation and capturing of

physical, functional, and non-functional requirements. The translation of (ambiguous) non-

functional requirements has received little attention in research. The following figure illustrates

the research model:

28

Literature review

In-house practices

Qualitative research

Prototyping

Assessment of systems engingeering practices

Assessment of knowledge management

Assessment of design management

Conclusion

Conclusion

Thesis report

Research proposal

Processing interviews

Processing information

Analyzing information

Interviews with field experts

User interface prototyping

Testing and evaluating

System prototyping

Requirement analysis

Knowledge Management

Natural Language Constraints

Design Process

Figure 1: Research model.

Figure X: Project life cycle of

a construction project with

the project phases based

upon BNA et al., 2009;

Eadie, Browne, Odeyinka,

Mckeown, & McNiff, 2013;

Nederlands Normalisatie-

instituut, 1993.

29

2.9 Expected results
The results as expected from this research shall be treated within this chapter. The expected results

of this research project will come in threefold. The first part consists of a literature review upon

the design process, knowledge management and natural language constraint in Architecture,

Engineering and Construction (AEC). Hereafter, a clear descriptive evaluation on the current

findings will be given to demark the scope and the necessity for a methodology or system that

treats the translation of non-functional requirements. Here, the applicability and opportunities will

be analyzed and captured. This literature review can be found in chapter 3.

In the second part of this research project, interviews will be held with field experts. The outcome

of these interviews will be used to evaluate on problems by translation and verification of non-

functional requirements, and where these are occurring within the design process. The evaluation

of these interviews will be put in a report outside of this thesis report due to confidentiality

obligations. The main findings will be summarized in chapter 4. The outline for automation by

translation procedures for non-functional requirements will be given with the purpose to

prototype a certain system. In the 5th chapter this outline and scope will be used for the

development of the prototypical requirement translator. This program is assumed to be fed with

the use of valid information and data gained from both literature and the World Wide Web. This is

used to ground the systems reasoning. Sources that might be consulted within these processes are

norms, standards, dictionaries and linguistic methods and techniques. The purpose of the system

is to execute a (semi) automated activity in which non-functional requirements can be checked by

means of automation on their lexical composition, enriched with useful information and data,

assigned to subsystems within the system and be converted into specific disciplinary product

specifications. The system is fundamentally breaking down non-functional requirements into raw

engineering’s data where design and manufacturing’s decisions can rely upon.

The system needs to provide the possibility in which knowledge can be created, captured,

evaluated and reused. The system is aimed to be able to create, read, update and delete (CRUD)

information and data as a function of time. These type of systems might get smarter and more

convenient to use as a function of its usage period since it can be thought to think and learn on its

own also. Within this research initiative, we aim to place the first building block of such a

prototypical system. Numerous use cases can be stated by use of these type of system besides this

research project its initial intention. This will be discussed in the recommendations section of this

report. The system relies upon the definition of concepts which are gained from literature and upon

the knowledge which is built up in the requirement translator its database by usage. The fusion of

all subsystems within such a translation system will form the final prototypical expert system where

future IT-developments can possibly rely on. The development of this prototypical system can be

found in chapter 5 and beyond.

30

This page is intentionally left blank

31

3 Literature review

3.1 Motivation
This literature review is held to explore and evaluate the actual knowledge that recent research

contributed to this research project its problem definition. This method provides a systematical

approach that will be used to review actual research and developments in relation to this research

initiative. In the literature review an overview is given in various topics that are assumed to be

closely related to the origin of this research project its problem definition.

The first topic is the design process which is evaluated to define the scenarios and process where

client specific requirements are used in. This procedure can be defined as the process where the

actual client specific requirements are functioning as the information and data that will be used as

the input of product or process design. The focus will rely on product requirements in this

investigation. Analyzing this process is required in order to evaluate the possibility of using

automated requirement translators within the design stages of building design.

The second part of this review on literature covers the domain of knowledge management. Here,

knowledge management will be reviewed on its relation to the AEC industry. This chapter will treat

the fundamental explanation of knowledge management, how this can be managed, its goals, and

applications. This is knowledge is from great importance for software prototyping.

The meaning and application of Natural language constraints within the Architecture, Engineering

and Construction industry is the third topic that shall be treated. Here, constraints as products

obtained from natural language will be analyzed in relation to their application for both

architectural design and as input for information systems. The evaluation of this literature review

reveals the possibilities for the design and development of an information system that can be

consulted for the translation of fuzzy requirements into product specifications during early design

stages.

32

3.2 Design process
Within this section, the development of a design during a construction project is evaluated to

define the information and data development needed for verification procedures. This is a very

critical process, especially for the verification of (ambiguous) fuzzy requirements since these group

of client specific requirements are not directly measureable (Moonen, 2016). The design process is

defined in different phases of a project life cycle in a building project within the AEC-domain.

According to BIMforum, there are various definitions of standards for the processual structure of

design phases. Given this assumptions, there needs to be mentioned that this research will focus

on the Dutch construction industry.

The design of the system, the building model, can be a complex task due to the collaborative
environment of the AEC domain. This collaborative environment expresses itself in to the multi-
disciplinary line-up that is collaborating as a function of an end product; the building. Since its
introduction over about 50 years ago during the late 1960’s by Brunton et al. (1964), the concept
of Architectural Management remains open to interpretation in the literature. This despite
numerous studies that have articulated the importance of adopting such concept, especially by the
CIB Working Group w096 Architectural Management (Emmitt et al., 2009). CIB W096 is the only
international network dedicated to examine and promoting AM (Alharbi, Emmitt, Domain., 2015).
This group has yet to adopt a final definition of this concept which is a criticism that can be made
of their only book named as Architectural Management: International Research & Practice (Emmitt
et al., 2009). With this as a given, this research adopts the following original and recent definition
of AM, which is grounded by empirical research: “Architectural Management (AM) is the strategic
management of the architectural firm that assures the effective integration between managing the
business aspects of the office with its individual projects in order to design and deliver the best value
to all stakeholders (Alharbi, 2015)”. According to Alharbi et al. (2015), Architectural Management
dissected into two distinct parts, given: office or practice management and project management.
The former provides an overall framework within which many individual projects will be
recommenced, managed and completed (Alharbi, Emmitt, Demain., 2015). Both parts have the
same objectives, but the techniques vary and mesh only at certain points (Brunton et al., 1964).

The poor management of early design phases has proven to be the cause for document defaults

and rework (El. Reifi & Emmitt, 2013; Tilley, 2005). It is in the early stages of the design phases

where the influences of stakeholders is largest and the costs of changes are lowest, making this the

best stage for value realization (Samset, 2008). The definition of phases within the Dutch

construction industry is defined by the Dutch standardization institute in the Dutch standards (NEN,

de NEderlansde Norm) and the definition of “The New Rules” (DNR, De Nieuwe Regeling). These

standards and definitions are created by Dutch institutional organs such as the NLIngenieurs and

BNA. The DNR-STB & NEN2574 define then phases of a construction project (BNA, NLingenieurs, &

ONRI, 2009; Nederlands Normalisatie-instituut, 1993). The DNR-STB and NEN2574 are defined for

the use of traditional contracts. In this traditional form of contracting, a tender shall be put in the

market whenever a design is finished. The manner of the timing of pricing and tenders vary greatly

33

Figure 2: Project life cycle of a construction project with the project phases based upon BNA et al., 2009; Eadie,

Browne, Odeyinka, Mckeown, & McNiff, 2013; Nederlands Normalisatie-instituut, 1993.

Figure X: Iterative character during the design phase (Moonen, 2016)

Figure X: Project life cycle of a construction project with the project phases based upon BNA et al., 2009; Eadie,

Browne, Odeyinka, Mckeown, & McNiff, 2013; Nederlands Normalisatie-instituut, 1993.

Figure X: Iterative character during the design phase (Moonen, 2016)

Figure X: Macleamy Curve (Lu, Fung, Liang & Rowlinson, 2015).

Figure X: Iterative character during the design phase (Moonen, 2016)

Figure X: Project life cycle of a construction project with the project phases based upon BNA et al., 2009; Eadie,

Browne, Odeyinka, Mckeown, & McNiff, 2013; Nederlands Normalisatie-instituut, 1993.

Figure X: Iterative character during the design phase (Moonen, 2016)

Figure X: Project life cycle of a construction project with the project phases based upon BNA et al., 2009; Eadie,

Browne, Odeyinka, Mckeown, & McNiff, 2013; Nederlands Normalisatie-instituut, 1993.

amongst the different types of contract forms that are in use within the Dutch AEC-industry (Chao-

Duivis, Koning, & Ubing, 2013). This section of the literature review is mainly focusing on the design

process rather than the pricing phase. Therefore, the pricing phase is not evaluated within this

overview. The schematic representation of the design phases has been merged and represented in

Figure 2.

Initiative
and

Feasibility

Project
definition

Schematic
design

Preliminary
design

Detailed
design

Technical
design

Execution
ready
design

Pre-
execution

Operation &
Management

Initiatief en
project

definitie

Initiatief en
project

definitie

Structuur
ontwerp (SO)

Voorontwerp
(VO)

Definitief
ontwerp

(DO)

Technisch
ontwerp

(TO)

Uitvoerings-
gereed ontwerp

(UO)

Werkvoor-
bereiding

Beheer

Project Life cycle

Design Process

Engineering process

Pre construction
process

Execution

Uitvoering

Construction
process

Operation &
Management

According to Moonen 2016, the development of information and data within these phases can be

dissected in two different groups. The first group can be classified as the raw information of

requirements which is provided by the clients in charge (Moonen, 2016). The second group can be

classified as the information which is created in the design which reacts to the requirements

(Moonen, 2016). The design should be generated according to the client’s requirement and the

environment the project is programmed in. Here, we find that the client specific requirements and

the environmental conditions are formulating the fundamental constraints. These constraints will

be specified as the ranges in which design decisions need to be taken. The interaction between the

different sources of information can be found within these processes. The early stages within a

design process have a more conceptual and iterative character. This can partly be explained by the

scarcity of both design and engineering’s information and data available at this point. The design

phase can be characterized by a top down approach (Moonen, 2016). Here, design decisions are

made about the key elements of design in the earlier phases. This approach can partly lead to a

more linear process eventually where decisions are developed in a technical way in subsequent

phases. The development of a design in relation to its iterative character is visualized in Figure 3.

34

Figure 3: Iterative character during the design phase (Moonen, 2016)

Figure X: Macleamy Curve (Lu, Fung, Liang & Rowlinson, 2015).

Figure X: Iterative character during the design phase (Moonen, 2016)

Figure X: Macleamy Curve (Lu, Fung, Liang & Rowlinson, 2015).

Figure X: Interaction between requirements and design solutions (Moonen, 2016).

Figure X: Macleamy Curve (Lu, Fung, Liang & Rowlinson, 2015).

Figure X: Iterative character during the design phase (Moonen, 2016)

Figure X: Macleamy Curve (Lu, Fung, Liang & Rowlinson, 2015).

Figure X: Iterative character during the design phase (Moonen, 2016)

According to Moonen 2016, the biggest decisions are made within the early design phases. Here,

decision upon the core concepts of a design will be captured. Numerous amounts of variants are

produced within these stages since the ultimate criterion for the design hasn’t been defined yet.

There is an inversely proportional relationship between the amount of variants as well as the

impact of decisions in regards to the final project definition. The further the design process

proceeds, the fewer the variants and the impact of the decisions will be and the more specific the

project definition shall get. This phenomenon can be explained by the fact that the cost of changes

will increase when changes are made in later phases (Lu, Fung, Peng, Liang, & Rowlinson, 2014).

This principle its effect has been included in the Macleamy Curve and visualized in Figure 4. The

elaboration of a design will be of a higher level at later phases, this is one of the main reasons why

the costs will rise for revisions in the design. Possible reconsiderations instigate numerous extra

process costs that shall manifest their self in subsequent phases of the project. This is one of the

biggest reasons why the amount of variants should be declining as a function of time in the design

process (Moonen, 2016). With this as a given, the differentiation between the design and the

engineering’s process can be grounded. According to Moonen 2016, the design process is

configured to assess variants and to select the most suitable design solutions as a function of the

design constraints. The engineering process functions as a method to create a clearer design by

giving the design a meaning by assigning rough elements (with properties and attributes) and a

higher level of detail (LOD). This clear difference between the function of these two phases

implicate the change of character; from more conceptual to a design with a high level of detail.

A
m

o
u

n
ts

 o
f

va
ri

a
n

ts

Schematic
design

Preliminary
design

Detailed design
Technical

design
Execution

ready design
Execution

design

Project Life cycle

Design process Engineering process
Pre construction

process

Iterative process

35

According to Moonen 2016, the difference in the level of detail and level of development run

parallel with the elaboration during the design phases. More specific, the level of detail is the

definition of how detailed an element is captured within a design of a building model. The level of

development is the degree of information and consideration which is put into a geometrical

element in a 3d model (BIMForum, 2015). This difference is from great importance given the fact

that level of development has a factor of reliability in itself due to the consideration which is put

into an element (Moonen, 2016). The amount of variants should be reduced as the level of

development will be more sophisticated. This implies that a definition of an element will be more

specific and clearer. The level of development varies among the various elements as there are

dependencies in importance of development (BIMForum, 2015; Solihin & Eastman, 2015).

3.2.1 Information exchange in the design process
During both the design as the manufacturing stages, a lot of information exchanges will occur. The

interaction of information and data is crucial for the quality of a construction project, as there is a

clear interaction between information in requirements and design solutions during the various

phases of a construction project (Chen & Luo, 2014). The documentation of the interaction

between requirements and design solutions is gaining importance as the necessity of proving

performance towards clients is growing with the introduction of integrated contracts within the

construction industry (Chao Duijvis, 2017; Kim et al., 2015; Pels et al., 2013). The interaction

between requirements and design solutions is shown in Figure 5.

Figure 4: Macleamy Curve (Lu, Fung, Liang & Rowlinson, 2015).

Figure X: Interaction between requirements and design solutions

(Moonen, 2016).

Figure X: Macleamy Curve (Lu, Fung, Liang & Rowlinson, 2015).

Figure X: Interaction between requirements and design solutions

(Moonen, 2016).

Figure X: Interaction between requirements and design solutions

(Moonen, 2016).

Figure X: Macleamy Curve (Lu, Fung, Liang & Rowlinson, 2015).

Figure X: Interaction between requirements and design solutions

(Moonen, 2016).

Figure X: Macleamy Curve (Lu, Fung, Liang & Rowlinson, 2015).

36

It is from great importance to make the right comparison during these interactions, as otherwise

the information which is created will not be useful (Moonen, 2016). The management of

information, and specifically the exchange of information in a construction project, is an important

factor that can influence the quality of a construction project (Eastman, Teicholz, Sacks, & Liston,

2011).

Requirement Design solution

Derived
requirement

Iterated design
solution

Le
ve

l o
f

d
et

ai
l

Verification

Verification

Time

According to Moonen 2016, with the introduction of Building Information Modelling (BIM) the

opportunities of managing the information in a construction project have grown. BIM is defined by

Eastman as “a modeling technology and associated set of processes to produce, communicate and

analyze Building Models”. These building models are visualized in three dimensions by means of

graphical computer aided design (CAD) models that are structured from objects which contain both

graphical and computable information and data. This implicates the pleasant usage of a BIM during

the total lifecycle of a system since these models are enriched with the right building information

and data. Within a BIM, information can be captured for numerous purposes as a function of a total

process. The principle in which the building information is captured and the interoperability of such

a model defines how eligible a BIM will be (Moonen, 2016). Still, the way in which the

interoperability of information within such a BIM model can be managed has been addressed as

one of the major challenges with the use of BIM (Dimyadi & Amor, 2013; Eastman et. al; Yougn Jr.,

Jones).

The complexity by managing the interoperability of such models is due to the various types of data

used in the industry, the unstandardized processes, varying classifications methodologies and the

great variety in stakeholders involved (National Institute of Building Science, 2011). The

BuildingSmart Alliance has introduced the Industry Foundation Classes (IFC) to improve the

Figure 5: Interaction between requirements and design solutions (Moonen, 2016).

Figure X: Interaction between requirements and design solutions (Moonen, 2016).

Figure X: Interaction between requirements and design solutions (Moonen, 2016).

Figure X: Interaction between requirements and design solutions (Moonen, 2016).

37

interoperability of the BIM models within the AEC-industry. This IFC standard is an international

standard that promotes the possibility of describing buildings throughout their lifecycle by means

of neutral file exchange (BuildingSmart, 2013). This creates a big managerial edge whenever various

type of project participants are collaborating during design, construction and maintenance

processes. The IFC standard reaches the opportunity to improve the collaboration between

different domains involved by reducing or discarding the amount of errors that occur during

information exchange.

The principle data standard of the IFC is object oriented (Moonen, 2016). The IFC standard is

specified by its data schema. The architecture of the data schema is structured by means four

conceptual layers. These layers are classified as follows; the domain layer, the interoperability

layer, the core layer and the resource layer (Leibich et al., 2013). According to Moonen 2016, the

resource layer is the lowest layer where the resource definitions are set. This layer doesn’t have

unique identifiers as they are defined at a higher level layer. The entities which built up the building

are defined in the core layer. More specific, here is where walls or windows (ifcWall, ifcWindow)

are defined. The more specialized objects and relationships can be defined by means of the

interoperability layer. Here for example, a relationship between a wall and a space can be defined

here (ifcRelBoundary). Within the domain layer, the specific concepts towards a domain are

defined. For example, information and data regarding construction management are defined here.

Here for example, the domain layer can include information and data about values like the cost of

an element. A total building model is described in an open data schema by means of these layers.

The applied CAD software which is used by the designing parties involved within a design process

can translate their models into an IFC format to ensure interoperability (Moonen, 2016). The

building information can then be used for numerous purposes within a construction project. IFC

promotes the possibility to use this data among various projects in a same way. This due to the fact

that the data can be stored in a standardized way. This opens up the opportunity to use this data

for automation of the processes within design phases (Moonen, 2016).

3.2.2 Systems engineering
The implementation of the generic theorem of Systems Engineering is looked upon as this is

becoming a more standardized method of working in the construction industry (BNA et al., 2009).

This method therefor offers a way to evaluate on the current design process. Systems engineering

is introduced within the construction industry to structure and manage the complexity of

construction projects. Literature defines various definitions of this generic theorem. The definition

of systems engineering, as widely used within the Dutch construction industry, is defined by the

International Council on Systems Engineering (INCOSE). This organ assigns the following definition

to Systems Engineering:

“Systems engineering is an interdisciplinary approach and means to enable the realization of

successful systems. It focuses on defining customer needs and required functionality early in the

38

development cycle, documenting requirements, and the proceeding with design synthesis and

system validation while considering the complete problem: operations, cost and schedule,

performance, training and support, test, manufacturing and disposal. Systems engineering

integrates all the disciplines and specialty groups into a team effort forming a structured

development process that proceeds from concept to production to operation. Systems engineering

consider both the business and the technical needs of all customers with the goal of providing a

quality product that meets the users needs” (INCOSE, 2015).

According to Moonen 2016, a few keywords can be identified for proper implementation of

systems engineering in, given: Systems thinking, Interdisciplinary, Completeness and Quality. These

keywords are essential by implementing systems engineering given their explanation on how the

goals of SE can be achieved. The characteristics of systems engineering must be elaborated upon

in more depth since this could improve the insight and the understanding of the use of systems

engineering within the AEC-industry in practice. Identifying these steps will give sketch a clear

overview that communicates on how the information on the requirements interacts with a certain

design.

Systems thinking
A system can be described as a holistic whole consisting of interacting parts that work together for
a stated purpose (INCOSE, 2007; ISO/IEC/IEEE 15288, 2015). A system is created by people to
provide for a certain need within a certainly defined environment (INCOSE, 2015). According to
Moonen 2016, the parts of a system can be described by means of objects, people, services or
other entities. The parts of a system are mostly defined as objects by implementation of systems
engineering within the AEC domain. The used of systems thinking is introduced for a better
understanding of the total project or process. Systems thinking is the fundamental basis of systems
engineering. The total system is structured by means of layers of subsystems. These subsystems
are dissected out of the system, and are used for dealing with complexity in hierarchical matter
(Moonen, 2016).

Functional thinking
According to Moonen 2016, the aim of the product development by means of systems engineering
is to fulfill a purpose. The functionality of this system can be seen as the fulfillment of the purpose.
A system is an answer to a certain group of functions that the product shall accommodate. This is
one of the fundamental reasoning why the need of thinking in functionality is important to create
a system. Thinking in functions therefor also demands to execute analysis from a larger to a smaller
scale which synchs with the top down method of systems engineering (Ministry of Infrastructure
and the Environment, 2005).

Client’s need central in the process
The need of the client is monitored continuously during the system development. The demand of
the client, which represents its need, is the main guidance by the creation of a suitable (product)
design. These needs are there for translated in requirements to verify the design. Complying client

39

specific requirements and design is very critical process (Moonen, 2016). Verification takes place
during the whole iterative process by the development of the design to optimize the integration of
the client needs in the best way (ProRail, 2015). This approach safeguards the client’s needs as a
central point within the configuration of the design.

Transparency
According to Moonen 2016, transparency is required within work processes to achieve a higher
design quality. Reasoning behind decision making are more likely to be agreed upon if transparency
is taking into account during design process. Clear interpretations of reasoning by decision making
will be shifted to successive procedures if these are not captured by means of transparency. It
leaves both partners and the client in doubts when decision making is not clarified in a rational
sense. The justification of design decisions made, whether right or wrong, make processes
traceable. Traceability can be very useful by tracing good and bad decision (errors). The open and
transparent process are most likely to result in less time loss and a higher quality (Werkgroep
Leidraad Systems engineering, 2007).

Decomposition
Systems engineering makes use of a top down approach (Incose, 2015). Therefore, decomposition
is needed to create an overview of a total system and to get more insight in the complex
information and data (BAMinfra, 2008; ProRail, 2015). The eventual tree structure of a system can
be created and more insight on a higher level part can be provided by subtracting lower level parts
by decomposing the total system (Werkgroep Leidraad Systems engineering, 2007).

Interfaces
There can be assumed that there where different systems or parts of the environment come
together, and affect each other through their connection, interfaces can be found (BAMinfra,
2008). The complexity of a project can become clear as the boundaries of different systems can
interact by means of interfaces between elements (Moonen, 2016). This interaction can be
observed as physical forces, streams and information (ProRail, 2015). The interaction can affect the
mutual influence on the total system whenever these interactions are not researched and
monitored critically (Moonen, 2016). Manufacturing defaults are often occurring due to this event,
this is why monitoring interfaces properly is a critical part of Systems Engineering (Visser, 2011).

Requirements
According to Moonen 2016, the emphasis on requirements management and engineering during
the whole lifecycle of a system is essential for the implementation of systems engineering. Only
from clear (unambiguous) requirements a solution can be derived which suits all the needs of the
client. Unambiguous is the manner in which it is completely clear what is meant by means of one
common interpretation (Grant, Kline, & Quiggin, 2009). The exploration of these requirements is
there for an essential part of the systems engineering process (Werkgroep Leidraad Systems
Engineering, 2007).

40

Verification & validation.
Moonen 2016 introduces on the topic of Verification & Validations according to the following
statement obtained from INCOSE 2007: “The systems engineering handbook as developed by the
INCOSE association defines verification and verification as the following two questions”; “Are we
building the right thing (validation)?” & “Are we building it right? (verification)” (INCOSE, 2007).
The phenomenon of verification and validation are essential parts of the systems engineering
process. These processes occur multiple times during the process to regulate the developed
elements of the total system. Verification is needed to rest assure that the quality of the created
product, whereas validation is required to ensure if the correct product is created. Goals in terms
of time, costs and technical specifications can be in danger when the verification and validation
processes are not executed by a sophisticated and disciplined approach (ISO/IEC/IEEE 15288,
2015). By this approach the needs that stakeholders require are interpreted better and the process
stages are defined more clearly (INCOSE, 2007).

Life cycle approach
According to Moonen 2016, Systems engineering approaches the development of a system with an
approach of the total life cycle. Here the total life cycle can be defined as the process from initiation
until retirement of the process (Moonen, 2017). A better understanding of the project can be
achieved by evaluating the total life cycle of the product (ISO/IEC/IEEE 15288, 2015). In this way
the needs stakeholders require are interpreted better and the process stages are defined more
clearly (INCOSE, 2007).

Systems engineering process
Numerous field experts, research institutes and scientists have contributed to the theorem of
Systems Engineering. The representation of the systems engineering process in its fundamentals
has been adopted widely in the research upon systems engineering (Moonen, 2016). The
fundamental steps of system creation has been illustrated and can be found in Figure 6. The major
elements in this schematic representation can be derived from the interaction between
requirements, functions and design elements (Moonen, 2016). The relation between these three
elements determine the functionality of the eventual system (US Department of Defense Systems
Management College, 2001).

41

The V-Model has been used greatly within the systems engineering literature to provide a more
detailed representation of the process of systems engineering. The V-model is developed to
visualize the top down process within the design loop. Within this V-model, the decomposition of
the initial system is realized to give more insight in the total system (Scheithauer, Esep, & Forsberg,
2013). The V-model does not implies that it always visualizes the total life cycle of a project with
the use of systems engineering. A more proper overview is achievable by combining
representations of the V-model with the total design. This total process can be seen in Figure 7.
Within this schematic process representation the phases of the development of a system can be
seen as a function of the whole lifecycle. The upcoming sections will elaborate upon the main
phases which are relevant for this research. These explanations are based on the work of Moonen
2016.

Figure 6: Systems engineering process (US department of defense, 2001).

Figure X: V-Model Systems engineering process extended, based on (Moonen, 2016; BAMinfra, 2008;

INCOSE, 2015; Werkgroep Leidraad Systems Engineering, 2007).Figure X: Systems engineering process (US

department of defense, 2001).

Figure X: V-Model Systems engineering process extended, based on (Moonen, 2016; BAMinfra, 2008;

INCOSE, 2015; Werkgroep Leidraad Systems Engineering, 2007).

Figure X: V-Model Systems engineering process extended, based on (Moonen, 2016; BAMinfra, 2008;

INCOSE, 2015; Werkgroep Leidraad Systems Engineering, 2007).Figure X: Systems engineering process (US

department of defense, 2001).

Figure X: V-Model Systems engineering process extended, based on (Moonen, 2016; BAMinfra, 2008;

INCOSE, 2015; Werkgroep Leidraad Systems Engineering, 2007).Figure X: Systems engineering process (US

department of defense, 2001).

42

Client
validation

Client
validation

Client
validation

Client
validation

Decomposition Integration

Testing design

Testing design

Testing design

Testing designStakeholders
analysis

Requirement
analysis

Design

System specification
requirements

System
design

Sub system
specification
requirements

Sub system
design

Component
specification
requirements

Component
design

Element
specification
requirements

Element
design

Realized
element

Realized
component

Realized
sub system

Realized
system

Realization
Operations &
Maintenance

Retirement &
replacement

Verification & Validation requirements

Verification & Validation requirements

Verification & Validation requirements

Verification & Validation requirements

Verification & Validation requirements

Stakeholder analysis
According to Moonen 2016, the key players in a project are identified by means of a stakeholder
analysis. These analysis is required to identify how they are affecting the configuration of the
system and what their main necessities are in a system. The understanding of the stakeholders
needs is from great importance for identifying what their goals are with a system, therefor proper
requirements analysis is crucial (Glinz & Wieringa, 2007). This creates the opportunity to
understand, in an unambiguous way, what functionality which stakeholders require for a proper
working system. Weak related requirements to stakeholders are main reason to project failure
(Hull, Jackson, & Dick, 2006).

Requirement analysis
According to Moonen 2016, the requirement analysis is defined as one of the most crucial and
essential parts of the systems engineering process. This due to the fact that the understanding of
the requirements is defining dictating design constraints (BAMinfra, 2008; Douglass, 2013; ProRail,
2015). Requirements as provided by the client are mostly described in an ambiguous and multi
interpretable manner (Marchant, 2010). The problem related to the ambiguity of requirements can
partly be grounded by the fact that requirements are likely to be stated in natural language. This
requires extensive linguistic analysis to understand the meaning and the goal that a client had by
formulating his need by means of a requirement (Moonen, 2016). These linguistic analysis aim for
a better and unambiguous interpretation of the need. A proper validation with the client is needed
to ensure that the interpretation is done correctly to reduce uncertainties that mostly reflect in
discussions about the interpretation of the need in further stages (Rijkswaterstaat, 2015).

Figure 7: V-Model Systems engineering process extended, based on (Moonen, 2016; BAMinfra, 2008; INCOSE, 2015;

Werkgroep Leidraad Systems Engineering, 2007).

Figure X: V-Model Systems engineering process extended, based on (Moonen, 2016; BAMinfra, 2008; INCOSE, 2015;

Werkgroep Leidraad Systems Engineering, 2007).

Figure X: V-Model Systems engineering process extended, based on (Moonen, 2016; BAMinfra, 2008; INCOSE, 2015;

Werkgroep Leidraad Systems Engineering, 2007).

Figure X: V-Model Systems engineering process extended, based on (Moonen, 2016; BAMinfra, 2008; INCOSE, 2015;

Werkgroep Leidraad Systems Engineering, 2007).

43

3.2.3 Design phases
The system is realized within the design phases assuming a systems engineering approach. The
system is realized with a so called ‘Top down’ approach. The definition of a top down approach can
be described by the fact that the system will be decomposed in to smaller elements. This approach
will lead to the configuration of the total system. It is crucial to realize a system that is performing
according to the required needs of a client that reflects in the interaction between requirements
and design elements of the system (Schaap et al., 2008). This interaction is shown in Figure 8. At all
levels of decomposition, an interaction between the requirements and the design is given.
Verification of the design complies with the requirements needs and needs to be done at every
level of decomposition. This stimulates the possibility to define if the design has the performance
as required by the client. A continuation on a mistake can increase an error if verification isn’t
executed at all levels of decomposition (Rijkswaterstaat, 2015). For this reasoning baselines are
defined after all phases within a project. This baseline needs to be verified according to the initial
requirements to ensure the quality in a project, and to prevent continuing on biased and defective
information and data as a function of the design process.

The definition of a system and building elements is a crucial interaction where information gets
related to each other (Moonen, 2017). The definition of the right comparison is essential for a
proper working system to ensure the right performance (Moonen, 2017). This interaction between
requirements and the eventual performance is visualized in Figure 8.

Fullfilled by

Satisfied by

Function
Building
element

Requirement Performance

Every successive step within the design phase of the systems engineering process ensures the

harmonized development of the system and increases therefore the level of detail (US Department

of Defense Systems Management College, 2001). This balanced development and increased level

of detail during the design phases are visualized by means of the V-Model.

The decomposition of a system reflects in a detailed development and increased detail.

Decomposition in the AEC domain is done by means of various methods that mostly rely on the

Figure 8: Interaction in design process, based upon Schaap et

al., 2008.

Figure X: Hierarchy of client needs, based upon (Walraven &

de Vries, 2009).

Figure X: Interaction in design process, based upon Schaap et

al., 2008.

Figure X: Hierarchy of client needs, based upon (Walraven &

de Vries, 2009).

44

type, the functionalities and the users of a building. This grounds the reasoning behind the fact that

a system can be broken down in various ways in terms of a System Breakdown Structure (SBS).

Besides the SBS within a systems engineering process, also other breakdown structures are made

according to the same principle. Therefore, the following breakdown structures are used to

decompose a project, given: Requirements Breakdown Structure (RBS), System Breakdown

Structure (SBS), Work Breakdown Structure (WBS), Organizational Breakdown Structure (OBS) and

the Functional Breakdown Structure (BAMinfra, 2008). These breakdown structures are correlated

to each other on various levels and define the total scope of a certain project. Within these steps

a link towards the system elements are described which should be elaborated on. These objects

are linked to a function, certain requirements and to responsible persons.

The design process happens iteratively as explained previously. The use of a certain expert system,

in which design decisions as taken in previous projects, could contribute significantly for time

management during early design stages. What has been learned from the past could then be

consulted by means of an open a smart system that supports reasoning by decision making. When

a system is described by a demand specification, variants are made to evaluate which design is

satisfying the best solution for the requirements. This is currently done by means of a trade-off

matrix to evaluate all the aspects of the variants proposed (Jahan & Edwards 2013). After a decision

is made, the reasoning behind a certain choice should be documented and then requirements

should evaluated for a higher level of detail to derive the implications of iteration (Moonen, 2016).

This would ensure that applicable requirements are taken into account by evaluating the variants

among each other (Moonen, 2016). The steps which are taken in the design process are evolving

from conceptual decisions to more detail. This will happen during the subsequent phases of the

project. A good example of this procedure is given according to Moonen (2016), where for example

the system design of a HVAC concept will be evaluated and a definition will be made about its

functionality. In the subsystem design, this system will be iterated into a concept of distribution. In

the component design this distribution concept will be drawn in a more specific way and in an

element design the products will be selected.

Realization
The manufacturing process can start after the design is defined, verified and validated by the client.
This implicates the realization of a system. This realization process is executed on an element level
and will result in a bottom up realization of the total system (Moonen, 2016). This realization needs
to be tested trough verification. Various tests can be applied by verification techniques such as
construction test, inspections and measurements. These techniques will ensure that a building
functions according to the initial requirements (BAMinfra, 2008). Throughout the realization
process, the connectivity of the various elements between the various breakdown structures
ensure that the realization is done according to the realization plan. This also ensures that the
system is verified according to all relevant and applicable requirements. The WBS is the most
important breakdown structure within this phase since the execution of the realization is described
within this breakdown structure (Moonen, 2016).

45

Operation and maintenance
The systems engineering approach can be very useful during the operation and maintenance stage
of a system. This due to the fact that the realization of the system is documented. Therefore, a
description of the functionalities and the elements is available. This could improve the execution
of operation and maintenance processes more easy (BAMinfra, 2008).

3.2.4 Requirements
Requirements as provided by clients function as the input of both process and product design
(Moonen, 2016). The goal of defining a requirement is to translate and capture the need of the
stakeholders involved to define what functionality the new system must accommodate (Hull et al.,
2006). The definition of a requirement by means of the ISO standard of Systems engineering
defines that a requirements is a statement that defines a need with associated constraints and
conditions (ISO/IEC/IEEE 15288, 2015). A requirement originates from a certain intention and goal,
which can be translated into needs (Walraven & de Vries, 2009). If the needs are defined in a clear
way, then translations into requirements with a specific product performance can be formulated.
This fundamental hierarchy translates the origins of a requirement. This approach should always
be taken into account when considering requirements and the performance. This hierarchy is
visualized in Figure 9.

Goal Value dimension Client need

Product
performance

High product value Emotional value Comfort Audiologic comfort

The conditions for a requirement to be used adequately has been researched upon greatly by

numerous researchers from various fields of engineering (Moonen, 2016). Fundamentally, a

requirement should be unambiguous, measureable, traceable, verifiable and concise (Sparrius,

2014). Various types of requirements have been identified and classified in the research on

requirement management and engineering (Moonen, 2016). Three types of requirements can be

identified according to Schneider & Berenback, given: Physical, functional and non-functional

requirements (Schneider & Berenback, 2013). These types of requirements are illustrated in Table

1.

Figure 9: Hierarchy of client needs, based upon (Walraven & de Vries, 2009).

Table X: Type of requirements based upon (Schneider & Berenbach, 2013).

Figure X: Hierarchy of client needs, based upon (Walraven & de Vries, 2009).

Table X: Type of requirements based upon (Schneider & Berenbach, 2013).

Figure X: Interaction between information in requirements and objects (Moonen, 2016).

Table X: Type of requirements based upon (Schneider & Berenbach, 2013).

Figure X: Hierarchy of client needs, based upon (Walraven & de Vries, 2009).

Table X: Type of requirements based upon (Schneider & Berenbach, 2013).

Figure X: Hierarchy of client needs, based upon (Walraven & de Vries, 2009).

Table 1: Type of requirements based upon (Schneider & Berenbach, 2013).

Figure X: Interaction between information in requirements and objects (Moonen, 2016).

Table X: Type of requirements based upon (Schneider & Berenbach, 2013).

Figure X: Interaction between information in requirements and objects (Moonen, 2016).

46

According to Moonen 2016, the manners in which requirements are characterized in this table

show the difference in the interpretation. On one hand, the physical requirement has a clear

required value for a property which is verifiable while on the other hand the functional

requirements must have certain ability (Moonen, 2016). The last type of requirement is more

difficult to see if it complies according to the requirement (Moonen, 2016). For the class of the

Non-functional requirements, (ambiguous) fuzzy requirements, it is more difficult to measure

whether it complies according to the requirement. To verify these type of requirements in a

building model, the requirements need to be suitable for measuring the compliance of the model

(Moonen, 2016). This compliancy is defined by the performance of the design relation to the

required format. Moonen 2016 states, when requirements are not measurable and therefore not

verifiable, problems can emerge as interpretation can play a bigger role due to ambiguity. To make

these requirements verifiable, the requirements need to be SMART. The abbreviation SMART

stands for: Specific, Measurable, Attainable, Realizable and Time bounded. This means that

requirements need to be understandable and prevent ambiguity (Moonen, 2016).

When a requirement is not quantifiable, it is easily affected by the interpretation which can cause

major errors during the communication process (Glinz, 2005). Therefore, requirements in the

construction sector can also be classified as numerical, relational and qualitative (Moonen, 2016).

According to Moonen (2016), numerical requirements are easily reproduced and would cause few

problems as the numbers can be made clear. Furthermore, this numerical kind of requirement can

be translated into a mathematical equation which can be checked by a computer. This promotes

the possibility to automate this process. The second kind of requirement is relational and is a

Boolean checking of the requirement (Schneider & Berenbach, 2013). This basically means that

whenever the relation is there it is correct and if not, then it is false. The last type of requirement

about quality can be arguable which makes it very complex to measure and therefore not

quantifiable or possible to check without a lot of interpretation (Moonen, 2016). From these types

of requirements a lot of problems can occur due to their ambiguous description and their multi

interpretability character. A risk in working with requirements can therefore be found in the

interpretation of requirements (Moonen, 2016). Communication with the client and verification of

the performance is therefore a crucial part of the whole project (Kiviniemi, 2005).

A good understanding of these requirement is needed given the fact that the meaning of

requirements can make a major impact on the design. Requirement analysis is there for an

important part of the design process (BAMinfra, 2008). The validation of this interpretation with

the client defines if the need of a client is satisfied (Moonen, 2016). Management of requirements

can often have little to no attention in a project while iterating the design (Moonen, 2016). As

requirements evolve due to iteration and decomposition, the design solution in the end result can

shift away from the original goal (Kiviniemi, 2005). According to Kiviniemi, four reasons for the

problems related to the management of requirements can be stated. These can be described by

the missing connection between requirements and designs, changes in personal during a project,

47

not directly involved end-users and direct and indirect requirements (Kiviniemi, 2005). Kim et al.,

2015 have defined two additional reasons why requirements management and engineering in

construction can be difficult. The first reason can be explained by the reasoning and the

interpretation behind a requirement that is not documented properly. The second explanation is

due to the complexity in requirements that arise from the many types of requirement, spaces and

functions which are interrelated with each other (Kim et al., 2015). Malsane et al. have defined the

following three characteristics which cause complexity by the interpretation of requirements;

subjectivity, inconsistency in terminology and complexity in structuring interrelationships

(Malasane et al., 2015). This implies that requirements are prone to the experience of the

interpreter, often inconsistent in the terminology and are complex to structure and in the way they

relate to other requirements and elements (Moonen, 2016).

According to Moonen (2016), these problems mostly occur by the fact that the requirements are

open to one’s interpretation. The measurability of a requirement is often stated by means of

linguistic descriptions in text. The lack of documentation of the reasoning increases the complexity

and the subjectivity of requirements. Another increasing aspect is the fact that the direct relation

with the design is often missing. The development of a knowledge based system that describes the

relation between the requirements and the design should therefore be very useful to overcome

the difficulties existing from the missing relations between the requirements and the applying

elements. Also the understanding and the reasoning should be captured in this system to maintain

the knowledge which is created during previous projects. A clear overview in the information

stream from goal to product performance needs to be synched as this process has many steps of

iteration and interpretation. Due to the amount of steps made from need to product performance,

this design process remains difficult to manage and to keep close to the desires of a client and the

end-user (Moonen, 2016).

Requirement types
Requirements are known to state and manifest various needs. There has been found that a variety
of requirements exists. To be more specific on requirement types and their properties, there has
been chosen to introduce an overview of the variety of requirements that exist within construction
projects. To define a valid list of the requirements types, the structure of developing a requirement
must be followed. As previously mentioned within this report, a requirement is created to define a
certain need of a certain client. A requirement can therefore be assumed to be a translation of a
need that corresponds to a certain value on its own. This is a very crucial, somehow forgotten
principle. From a certain need, for example the need of a ‘cozy building’ a translation (attempt) to
a requirement will be made.

Initially, requirements are known to be applicable for spaces. Spaces are a non-tangible objects,
this space requirement needs to be satisfied by the elements which can define a certain (cozy)
space. We can assume that we can express a (cozy) space by certain objects that function as the
space its boarders. The interaction between a certain space and certain objects; and together with
that the iteration from a space requirement towards an object requirement is essential for defining

48

a performance (Moonen, 2016). This total composition of interactions between space
requirements, spaces, object requirements are visualized within Figure 10.

Defining
performance

Verification
Allocation

A
lli

gn
in

g
in

fo
rm

at
io

n

A
lli

gn
in

g
in

fo
rm

at
io

n

Requirements information

Model information

Contains

Defined by

Space
requirement

Object
requirement

Space 1 Wall object 1

Value = Z

Value > x Value > Y

For the creation of a complete list of requirements types, existing projects need to be investigated.
This is a tough job, especially when decisions in regards requirement management and engineering
have never been logged and captured. Here, the findings as stated within the work of Moonen
(2016), have been used for the sake of brevity. Moonen (2016), has investigated five existing
projects upon the various client requirements. The requirements within these projects are
managed with the use of a relational database (Relatics). In these environments, the requirements
of the clients have been translated into manageable interface. In Table 2, a description is given
about the projects which are used for the definition of the requirement types.

Figure 10: Interaction between information in requirements and objects (Moonen, 2016).

Table X: Description of analyzed projects (Moonen, 2016).

Figure X: Interaction between information in requirements and objects (Moonen, 2016).

Table X: Description of analyzed projects (Moonen, 2016).

Figure X: Requirement type classification (Moonen, 2016).

Table X: Description of analyzed projects (Moonen, 2016).

Figure X: Interaction between information in requirements and objects (Moonen, 2016).

Table X: Description of analyzed projects (Moonen, 2016).

Figure X: Interaction between information in requirements and objects (Moonen, 2016).

49

Goal Value Need Requirement Performance

Cost efficient
process

Process value Modelling quality

Well formedness model
Clash free model

Naming & identification
Location requirements

Availability of properties

Correctness of objecttype
Intersections

ObjectID
Geo Location

Objectproperty

Thermal comfort (heating)
Thermal comfort (cooling)

Internal comfort (air)
Audiological comfort
Visual comfort (light)

Visual comfort (reflectivity)
Internal comfort (moisture)

Temperature
Airflow

Sound(pressure) levels
Heatgain

Light emmission
Capacity

Reflection Factor
Humudity

VentilationRate
Illuminance

ComfortUse value

Emotional value Aesthetics

Aesthetic quality
Finishing requirements
Material requirements
Colour requirements

Transparency
Spatiality
Visibility

Quality levels
Finishing levels

Material
Colour (RGB)

Transparancy ratings
Area

Line of sight

High product value

Various requirements are coming forwards given this data set. The aim of a requirement is always
to define a certain need that a client desires. A requirement starts from a certain function and value
which is required to be present in the building. These define certain needs like for example a ‘cozy
building’. An analysis on the variety requirements of requirements, executed by Moonen 2016, can
be seen Table 3.

Table 3: Data analysis outcome (Moonen, 2016).

Figure X: Essence of the verification process (Moonen, 2016).

Table X: Data analysis outcome (Moonen, 2016).

Figure X: Essence of the verification process (Moonen, 2016).

Table 2: Description of analyzed projects (Moonen, 2016).

Figure X: Requirement type classification (Moonen, 2016).

Table X: Description of analyzed projects (Moonen, 2016).

Figure X: Requirement type classification (Moonen, 2016).

Table X: Data analysis outcome (Moonen, 2016).

Figure X: Requirement type classification (Moonen, 2016).

Table X: Description of analyzed projects (Moonen, 2016).

Figure X: Requirement type classification (Moonen, 2016).

Table X: Description of analyzed projects (Moonen, 2016).

Figure 11: Requirement type classification (Moonen, 2016).

Table X: Data analysis outcome (Moonen, 2016).

Figure X: Requirement type classification (Moonen, 2016).

Table X: Data analysis outcome (Moonen, 2016).

Figure X: Essence of the verification process (Moonen, 2016).

Table X: Data analysis outcome (Moonen, 2016).

Figure X: Requirement type classification (Moonen, 2016).

Table X: Data analysis outcome (Moonen, 2016).

Figure X: Requirement type classification (Moonen, 2016).

50

3.2.5 Verification
Both literature as the AEC-industry assume several definitions in regards to verification. The
definition of verification, according to the ISO/IEC/IEEE 152888, is stated as follows; “Verification
is a confirmation through the provision of objective evidence that specified requirements have
been fulfilled” (ISO/IEC/IEEE 15288, 2015). This translates into the question for the design process;
“is the design correct?”. The verification process can be identified as a feedback loop to complete
the design process (Moonen, 2016). The essence of a generic verification process is visualized in
Figure 12. This representation visualizes the fundamental procedures within the verification
process. The definition of a verification process should there for be done adequately as otherwise
an evaluation will not have any value (Marchant, 2010). Validation of a requirements should be
done to enrich the validation process with value. This approach ensures that the verification can
be executed correctly. The validity of a requirement remains a difficult endeavor (Moonen, 2017).

Performance

Requirement Design solution

Verification

ProvidesDemands
Evaluates

Shishko & Aster have defined procedures to ensure that requirements are unambiguous, traceable,
correct and well defined. Whenever his definition is adequately defined and given before a design
is made, then the design will improve and the verification process will much become easier (Shishko
& Aster, 2007). Haskins has defined the steps to undertake to ensure proper verification to ensure
the completeness of the verification process. This process consist of three steps; Preparing,
Performing and manage the result of verification (INCOSE, 2015). These steps will be elaborated
upon within de following paragraph.

The first step is structured by means of a definition of the strategy and corresponding tactics for
verification in a project in relation to costs and risk. Within this step, the definition of what should
be verified (requirements, characteristics etc.) is firstly defined. After this is done, the procedures
will be assigned which ground with what they will be verified. The constraints that flow from this
procedure will then be defined towards the execution. Lastly, during the preparation of the
verification, the availability of information should be taken care of to ensure that the execution can
be done smoothly. This whole procedure should be documented within a verification plan. In this
verification plan the definition of verification, the success criteria, the used verification method,

Figure 12: Essence of the verification process (Moonen, 2016).

Table X: SECI model of knowledge conversion (Rekveld, 2017).

Figure X: Essence of the verification process (Moonen, 2016).

Table X: SECI model of knowledge conversion (Rekveld, 2017).

Figure X: Activity diagram 1: The interpretation, translation and verification process.

Table X: SECI model of knowledge conversion (Rekveld, 2017).

Figure X: Essence of the verification process (Moonen, 2016).

Table X: SECI model of knowledge conversion (Rekveld, 2017).

Figure X: Essence of the verification process (Moonen, 2016).

51

the required information and data and the enablers is captured (INCOSE, 2015). Secondly, the
verification should be executed according to the plan and the results should be analyze. These
results should be communicated. This communication process functions as an evaluation on which
actions should be taken to cope with non-complying elements.

If we take a closer look to the root of failures and defaults within the verification process, the
following reasons can be found according to Marchant, 2010; inaccurate or defective
requirements, ambiguous, incorrect allocation of requirements and even missing elements. These
reasoning cause errors if the verification process isn’t adequately evaluated and validated. These
reasons can result in a positive outcome of verification, but are actually failing due to the
incompleteness or incorrectness (Moonen, 2016). This presence can be inaccurate and can lead to
extensive rework and costs if discovered in later stages of the project. Underestimating this
procedure can therefor provoke higher project variance. This phenomenon is quite often the case
within the AEC-industry. The traditional method of working within the AEC-industry heavily relies
on the workmanship of constructors to deliver a product (building) that is suitable for usage
(Moonen, 2016). Verification of requirements has become an important process within the design
process of building projects due to the increasing complexity and the introduction of integrated
contracts (Bouwend Nederland, 2014). Underestimating the importance of verification within a
design process can results in major mistakes. A big opportunity lies here to improve the design
process to ensure that designs are complying with the requirements and improve the quality
(Moonen, 2017).

3.2.6 Conclusions
This part of the literature review has been conducted to allocate the research problem and
objective as a function of the overall design process. The traditional design process has been set
against the systems engineering process. The systems engineering approach is more sophisticated,
if executed correctly, relative to the traditional design processes. This sophistication flows from the
structured approach towards the specification and traceability of linguistic chunks of text, as
obtained from client’s brief, into requirements that reflect in structured design decisions. This
makes design decisions traceable and justifiable as a function of both product design and during
operation and maintenance. This could possibly imply why clients are stating the SE approach as
one of their process requirements, especially in case of complex demands where market parties
are somehow unfamiliar with.

It seems to be crucial to express the design task in terms of a problem context, the project itself,
and the desired system. These three aspects should relate to the content of the client’s brief. These
aspects could contribute to the definition of boundary conditions and assumptions that dictate
how the requirements can be formulated to achieve a certain system performance. However, the
SE approach is relatively new within the AEC-industry. This could make it hard to convert the design
decisions as taken from the past into a set of standardized knowledge that can be used for decision
making. It is crucial to have a set of boundary conditions and assumptions before translating
ambiguous client’s wishes within a system by complex design tasks. It is essential in these cases to

52

find dependencies in words within the sentences of the client’s wishes towards elements of the
system prior the SE process.

There has been observed that the effectiveness of knowledge systems could be positioned after
the client’s briefing stage, and prior to the systems engineering process. Consulting a system in
which knowledge has been captured, in terms of boundary conditions and assumptions in regards
to the translation of client specific requirements in product specifications, could contribute to
manifest the client’s wishes in product configurations. The use of a certain knowledge system could
possibly contribute to a head start for the participation of tender. This is the moment where such
systems can prove their functionality as a support tool for specifying requirements prior to tenders
to gain a head start within a competitive environment. Programming a system according to
experience and knowledge from the past, by means of a knowledge system, can be very useful in
processes where a little actual information is available.

53

3.3 Knowledge Management
The AEC industry is induced to work more effective and efficient due to the complex demands that
arise from the client’s need within the architecture, engineering and construction domain.
Traditional managerial approaches lack in their synchronicity to the current demand from the
market. A potential solution to counteract these possible processual deficiencies is by the
introduction of Knowledge Management. This approach can be implemented on an organizational
level within firms to optimize their governing influences. The AEC industry has introduced
numerous (static) techniques in the past, based on traditional KM techniques, but these systems
require a lot of maintenance. These systems are also lacking in their capabilities to actively share
knowledge due to their static nature. With the fast development of research on the domain of
Building Information Domain, new opportunities raised to create knowledge management
systems. These systems can be consulted during decision making procedures as a function of their
application within the variety of both design and manufacturing processes. The development of
Building Information Modelling (BIM) contributed a lot to lucrative application of KM within the
AEC domain. This due to the fact that a BIM is basically an informational database in which design
decisions have been stored as a function of a certain demand specification. This development might
reach the opportunity to extract crucial information from previous projects, or shared projects on
the World Wide Web, that can be used by decision making according the a knowledge system. A
BIM can provide a very specific and unique source of information and data as it generates, manages
and captures the data created during the life cycle of a building. This principle reaches the
possibilities to gather data by data mining approaches to promote KM.

The changes from an industrial driven society to a knowledge based driven society has let the
aspect of knowledge to be the foremost important resource of a company. Therefore, sharing
knowledge within a certain company has become more important than ever (Johannessen, Olaisen
& Olsen, 2001). This due to the assumption that a lot of administrative benefits might be achievable
on an organizational level by the right interpretation of the available information and data. The
reuse of existing organizational knowledge attained by previous experiences can reduce a lot of
time spent on problem solving, and can therefor increase the quality of work which results in a
competitive advantage on the long run (Rekveld, 2017). Therefore, managing the knowledge that
is spread around the organization is from great importance. The management of knowledge is
especially important for the companies within the AEC-industry. This due to the high amount of
engineering tasks, as these are highly knowledge and experience driven (Deveraja, 2015).
Companies should be able to leverage their knowledge in order to maintain their sustainable
competitive advantage over the competition to make their business more profitable.

The fundamental definition of Knowledge management (KM) is difficult to articulate and to
quantify because due to the fact that it withholds elements of disciplines of both hard and soft
siences (Abaljaber et al., 1998). It seems that there is no consensus on what KM is (Rekveld, 2017).
Research initiatd by MIT (Abaljaber et al., 1988) reveal that different articles are defining different
solutions in terms of KM. The same research, a small alteration of the definitions of Frappaolao and
Tomes (1997) is proposed, given: “KM is a tool set for the automation of deductive or inherent

54

relationships between information objects, corporate users and business processes”. Logically
speaking, it is from great importance there is a common understanding of what knowledge is and
how this can be obtained. The upcoming sections will fundamentally demarcate where knowledge
originates from, how that it can be defined and which types of knowledge exist.

BIM data as knowledge source
Building Information Modelling is a very promising development within the architecture,
engineering and construction (AEC) industries where numerous researchers are currently
investigating upon. With BIM technology, it becomes possible to generate a digital and accurate
virtual 3 dimensional model of a building with enriched information and data. Whenever BIM is
implemented correctly within the whole construction process, then the computer-generated
model contains precise geometry and relevant data needed to support the construction,
fabrication and procurement activities needed to realize the building (Eastman et al., 2011). The
realization phase is not the only phase where BIM technologies can be useful. BIM technologies
can also be very beneficial during the operation and maintenance phase of the building (Davtalab
& Delgado, 2014). A useful definition of BIM was described by Campbell (2006). He defines a BIM
as an intelligent simulation of architecture that exhibits the following six key characteristics, given:
(1) Digital; (2) Spatial (3D); (3) Measurable (quantifiable, dimension-able, and query-able); (4)
Comprehensive (encapsulating and communicating design intent, building performance,
constructability, and include sequential and financial aspects of means and methods); (5)
Accessible (to the entire AEC/ owner team through an interoperable and intuitive interface); (6)
Durable (usable through all phases of a facility’s life).

A BIM model manifests itself by building components that are enriched with information and data
that describe how they behave and are consistent and non-redundant data (Rekveld, 2017).
Building components are modeled as objects that have a digital representations and data about
what they are. These can be related with computable graphics, data attributes, parametric rules
and descriptions on how they behave. This makes it possible to create analyses of the building and
its usage in work processes. This BIM model also contains coordinated data. Besides the BIM model,
another very important part of BIM is the interoperability between parties of a certain project
team. This safeguards the fact that every team member is assured to have access to the latest
project data. It makes it possible to allow every member to have access to all the data. A cloud
based server, such as a BIMserver, is the most used technique to ensure that project data is both
shared in real time as it is accessible from different locations.

According to Rekveld (2017), it is possible to allow every member to have access to all the data,
these data need to be: real time data exchange and share in a predefined format. There are two
primary approaches for the predefined format, given: (1) use a proprietary file format and
therefore stay within one software vendor’s product; or use another product that is allowed by the
vendor, or (2) use different vendors that can exchange data using nonproprietary file format that
is a universal supported standard. The advantage of the predefined format is that it allows for
tighter integration among products in multiple directions. For example, a change in one model

55

results in a change in all other linked models. The recognizable disadvantage is that every team
member of the project team is forced to use the programs of the specific vendor. This could
potentially affect the investments a lot considering both licensing and training of the members.
The second approach would solve the disadvantage of the first approach but the disadvantage of
this approach is that the current universal standard, Industry foundation Classes (IFC), is not
designed to carry all relevant data.

Still, the implementation of Building Information Models (BIM) has proved to be in use by the
enhancement of the performance of AEC projects (Rekveld, 2017). Rekveld (2017) states that the
BIM is a “shared knowledge resource for information about a facility forming a reliable basis for
decisions during its life-cycle; defined as existing from earliest conception to demolition”. It has
contributed to the improvement by the communication of the design between various
stakeholders, by enabling the identification of clashes ahead of time, by enabling the simulation of
the construction sequence, and by the improvemen of the communication between various craft
subcontractors and the general contractor (Deshpande, Azhar & Amireddy, 2014). According to
Rekveld (2017), building information models are inherently parametric, data-rich, object based
representations of the facility being designed and constructed. Thereby, building information
models can be both conceptualized as centralized, interconnected data stores which can contain
design and fundamental construction information about the various disciplines involved within a
certain construction project. Rekveld (2017) further states that this centralized and integrated
nature of the design information can potentially provide a very context rich platform for the
capture, storage and dissemination of the knowledge generated during the design and construction
processes.

One of the principle requirements of an effective knowledge management system is its ability in
communicating and capturing knowledge effectively across various phases of a construction
project (Dave and Koskela, 2009). BIM models are uniquely qualified as a knowledge source due to
the fact that BIM models can be used over the whole span of the construction project and even
evolve and are able to capture the knowledge as soon as the knowledge is created (Deshpande,
Azhar & Amireddy, 2014). Although BIM models are qualified as great knowledge sources, the
knowledge within these models is not explicit. Therefore BIM models can be seen as sources of
embedded knowledge (Rekveld, 2017). Embedded knowledge is knowledge that is locked in
processes, products or artefacts according to Argote & Ingram (2000). Even though embedded
knowledge can have an explicit form, such as BIM models, the knowledge itself is not explicit, the
implications of the embedded knowledge are not immediately clear. (Gable & Blackwell, 2001).
Rekveld elaborates upon this fact by stating that the knowledge itself has to be made explicit and
usable to be able to use the embedded knowledge as a source for knowledge management. To
promote this, big data techniques will be introduced. The definition of big data and the associated
techniques will be explained in the upcoming sections.

56

3.3.1 From data to knowledge
A good understanding of the concept of knowledge and knowledge taxonomies is important due
to the fact that theoretical developments in the field of KM are affected by the distinction among
the different types of knowledge (Alavi & Leidnet, 2011). The fundamental concepts of data,
information and knowledge are closely related (Kock et al. 1997), and it is commonly known that
knowledge has a higher level than information, and information has a higher level than data (Tuomi
1999). According to Rekveld (2017), data can be defined as symbols that represent the properties
and attributes of objects and events without any added interpretation of analysis. Data simply exist
and has no significance beyond its own existence and they can exist in any form, usable or not.
They do not have meaning of their selves (Ackoff, 1989; Ackoff, 1999). According to Davenport and
Prusak (2000), “data are a set of discrete, objective facts about events”, and “provide no judgment
or interpretation and no sustainable basis of action”. Data are syntactic entities and patterns
without meaning, and exist in usable or non-usable forms without significance beyond their own
existence (Aadmodt and Nygard, 1995; Bellinger et al. 2004). Uriarte (2008) states, “data have no
meaningfull relation to anything else, since they are missing a context”.

On the other hand, information is assumed to be data that have been given meaning by means of
relational connection. This enrichment can be very usefull; but it not mandatory to be so.
Information can be explained as structured data with meanings, which is generated from the
interpretation process of data (Aamond, Nygård., 1995). Ackoff (1990) defined information as
“data that are processed to be useful, providing answers to ‘who’, ‘what’, ‘where’, and ‘when’
questions”. The last definition to be given is that on knowledge. Here, knowledge can be assumed
to be refined information (Rekveld, 2017). Rekveld (2017) states that knowledge is the appropriate
collection of information, in such way that its intention is to be useful. Knowledge is a deterministic
process according to Rekveld (2017). When someone is memorizing information, then they have
amassed knowledge. This knowledge has a certain useful meaning to them, but it does not provide
for, in and of itself, an integration such as when it would infer further knowledge (Ackoff, 1990;
Aamond and Nygård, 1995). Data are a carrier and storage of information and knowledge along
with a media for information exchange and knowledge transfer (Kock et al. 1997). Kock et al. (1997)
states that information is descriptive and related to the past and the present, while knowledge can
be used to predict the future within a certain range. The role of knowledge is to facilitate the
processes of transforming data into information through data interpretation, deriving new
information from existing through elaboration, and acquiring new knowledge through learning
(Aamodt and Nygård 1995)

Tacit and explicit knowledge
The knowledge as captured within organizations can be identified by means of two dimensions,
given: tacit and explicit (Nonaka, 1994). Nonaka (1994) states that tacit knowledge is rooted in
action, experience, and involvement in a specific context. Here, the cognitive element is referring
to an individual’s mental model consisting of mental maps, beliefs, paradigms and viewpoints.
According to Rekveld 2017, the technical component consists of concrete know-how, crafts and
skills that apply to a specific context. Pozzali & Viale 2015 state that tacit knowledge consists of

57

professional expertise, individual, insight, experience, and creative solutions. Junnarkar and Brown
(1998) propose that “tacit knowledge is that which is implied but not actually documented”. More
specific, knowledge can be tacit not because one is unable to articulate it; but because it has not
been captured yet. This perspective is very useful according to Rekveld (2017) because it suggests
that some tacit knowledge may be more valuable when made explicit than other. The goal of
knowledge management would not be to explicate all tacit knowledge, but rather to assess first
the existing tacit knowledge and determine that which has the most value before trying to make it
explicit (Rekveld, 2017).

The class of explicit knowledge is articulated, codified and communicated in symbolic form and/or
natural language. Rekveld (2017) states that most explicit knowledge exists in forms of technical or
academic documents, such as manuals, mathematical expressions, copyright and patents. This
’’know-what’’ or systematic knowledge is readily communicated and shared through printed
documents, electronic methods and other formal ways. On the other hand, explicit knowledge is
technical and requires a level of academic knowledge or understanding that is gained through
formal education. Explicit knowledge is codified, stored in a hierarchy of databases and is accessed
with high quality, reliable, fast information retrieval systems. Whenever codified, explicit
knowledge assets can be reused to solve many similar types of problems or connect people with
valuable, reusable knowledge (Smith, 2001). A reason for companies not to invest in KM is due to
the fact that sharing processes often require major monetary investments in the infrastructure
needed to support and fund information technology (Hansen et al., 1999).

Knowledge conversion and creation
Aside from the tacit-explicit distinction of knowledge another distinction between dimensions of
knowledge was identified by Nonaka (1994) (Rekveld 2015). The dimensions individual and
collective (or social) knowledge, in combination with the tacit-explicit dimension, can be used to
distinguish different kinds of knowledge conversion and creation (Rekveld 2017). Nonaka (1991)
dimensioned four types of knowledge conversion on the SECI (Socialization, Externalization,
Combination and Internalization) model. These four fundamental types are socialization,
externalization, combination and internalization. The first type, ‘Socialization’, is converting
individual tacit knowledge to group tacit knowledge. The type ‘externalization’ tacit knowledge is
made explicit. The type ‘combination’ is conversing separate explicit knowledge to systematic
explicit knowledge whereby ‘internalization’ is the conversion from explicit knowledge to tacit
knowledge.

 Table 4: SECI model of knowledge conversion (Rekveld, 2017).

Figure X: Activity diagram 1: The interpretation, translation and verification process.

Table X: SECI model of knowledge conversion (Rekveld, 2017).

Figure X: Activity diagram 1: The interpretation, translation and verification process.

58

Goal of knowledge management
Within the previous sections, knowledge and knowledge management have been discussed. There
has been defined what knowledge and knowledge management are and from what importance it
is. Stil, the actual goal of knowledge management is, has not been covered yet. The fundamental
goal of knowledge management (KM) is to connect knowledge providers and knowledge seekers
to provide value creation and create sustainable competitive advantage (Abaljaber et al., 1998;
Alavi & Leidner, 2001). According to Rekveld (2017), Sustainable competitive advantages can be
achieved through resources that are valuable, rare and imperfectly imitable. Here, the resources
can be property-based or knowledge based. Property based resources are legally controlled by a
specific firm where knowledge based assets are protected because they are often subtle or difficult
to understand or copied by outside observers.

In a study executed by Davenport, De Long and Beers (1997) four business objectives that fulfil the
goal of KM are identified, namely: (1) To capture knowledge; (2) To improve knowledge access; (3)
To enhance the knowledge environment; (4) To manage knowledge as an asset.

Capturing knowledge can be done by the creation of KM repositories. These archives consist of
structured documents with knowledge embedded within them, stored in a way that they may be
easily retrieved by queries. According to Rekveld (2017), much better access to knowledge can be
facilitated by improving the processes of knowledge transfer between individuals and between
organizations. Transfer and use of an enhanced knowledge environment can be achieved by
proactively facilitating and rewarding knowledge creation. Knowledge should also be managed as
an asset. This can be achieved in various ways. On one hand, some companies could include their
intellectual capital in the balance sheet, while on the other hand other companies leverage their
knowledge assets to generate new income or reduce costs. Knowledge can be part of a certain
business means by means of various application within a certain firm.

3.3.2 Conclusion
This part of the literature review has been conducted to measure how knowledge management
can counteract to the translation and specification of ambiguous client specific requirements.
Experiences from the past seem to be of great importance to translate data into information, and
information into knowledge. However, the difference between tacit and explicit knowledge is
crucial within this procedure. The field experts within the AEC-industry are withholding a lot of tacit
knowledge. Their knowledge is captured within their minds and are not made explicit. Explicit
knowledge implies fundamentally that the knowledge is captured by means of certain techniques
that is accessible by human. Explicit knowledge could bridge the unknown to the known. Generic
theorems are known to be captured in literature and other sources. However, the specific
knowledge of specialists within the AEC-industry are often not captured by means of standards and
semantics. This makes it hard to use such knowledge. This implies partly the tradition of intuitive
decision making. Clients are often unaware how decisions are made previous and during the design
stages. Whenever justifications for decisions are asked, experts tend to reconstruct their procedure

59

rather than deliver the exact procedures. However, there must be mentioned that the introduction
of BIM and particular tools such as relational databases and common work environments are
gradually contributing to solve this problem area.

The rise of electronic relational databases seems to contribute to the storage of data and
information on projects as a function of time. This promotes the traceability and justification of
procedures due to the translation and specification of client specific requirements, especially when
a systems engineering approach is introduced to structure these procedures. However, the content
of these databases is often static. The content can be consulted for manual queries, but are often
not enriched with the right knowledge for decision making. The formal notations within these
databases are insufficient. This implies the linguistic chunks of text which are not easily
transformable into decision variables for decision making. The approaches, such as systems
engineering, that are used within relational databases to design these environments are
fundamentally structured. However, the information where this approach consists of does not
contain semantics. Semantics as in standards within its data. This might be required to find laws
during data analysis which is required to achieve semantics. Assuming a sentence to be a token,
then we would find a variety of formats on how these are formulated sentences are structured
currently. There is no structured way in which linguistic descriptions are formalized, which make it
hard to use this information for automation purposes.

The unstructured content of such relational databases might imply the urged need for a knowledge
system in which design decisions are captured electronically by means of a formal notation. This
explicit knowledge can then be consulted for support by a variety of processes within the design
process. This especially for the translation and specification of client specific requirements previous
to the early design stages. Such knowledge systems can be introduced prior to the systems
engineering process. The implementation of such systems could promote user client interaction,
especially under a scarcity of information where clients are known to be unprofessional. Here,
unprofessional implies the unfamiliarity of the client to specify his needs as specific as possible. It
is of great importance during these iterative processes to support clients given the fact that they
are unfamiliar with the business and design processes within the AEC-industry. Misinterpretations
due to ambiguous client specific requirements can reflect on wrong design decisions. Harmonizing
the client’s needs and the expectations according to boundary conditions and assumptions seems
to be crucial during these stages. Consulting knowledge, therefore, by means of certain automated
knowledge systems, can be of great importance during these stages to provide trust, exploit
business processes, and safeguard product performances.

60

3.4 Natural language constraints

3.4.1 Constraints within engineering
According to Niemeijer (2011), the majority of constraints in the building industry are specified
using a natural language, such as Dutch or English. Examples of these include building codes and
requirements that are included in the client’s brief. There are many rules that must be obeyed by
the design for a certain consumer product (Halman et al. 2008). According to Niemeijer 2011, on
one hand some of these rules are derived from human morphology; a phone must be small enough
to fit in your hand. However, on the other hand, some of these rules will be marketing-based; a
maximum cost requirement. Yet another source wherefrom design rules originate are laws and
regulations; the safety requirements on cars (Niemeijer, 2011). All these rules are expressed by
means of constraints that the final design must satisfy in order to link the demand to expectations.
These constraints can be formulated by means of ranges in which design decisions need to be
taken. Constraints dictate certain bandwidths in which design decisions needs to be taken in order
to satisfy the client’s needs. Currently, checking whether all of these rules have been satisfied is, in
most cases, executed manually (Niemeijer, 2011). This is very labour-intensive given the large
amount and variety of existing rules. Developing a way to automate this checking procedure would
immensely benefit this process. However, this could possibly imply that it is required that building
regulations need to be formalized in an objective manner so that they can be verified by a
computer. According to Niemeijer (2011), a large subclass of all building regulations can be
formalized, but there are still some crucial exceptions. Regulations such as “the architectural
quality of the addition must correspond to that of the surrounding buildings” have no objective
interpretation, as “architectural quality” is an ill-defined term: does this concept refer to technical
quality or the aesthetics? The Dutch institute, Concepten Bibliotheek Nederland, has contributed
since early 2011 to define a lot of these concepts (CB-NL, 2014). Still, there is no single accepted
concept and thus the rule cannot be formalized. The CB-NL is striving for glory but still a lot of
concepts are missing which make this ontology not usable in reality. There needs to be mentioned
that this will evolve as a function of time. However, the computer will be able to check a sizeable
amount, if not the majority, of the regulations, removing the need for people to worry about the
trivially checked rules and giving them more time to focus on questions of aesthetics (Niemeijer,
2011). Therefor we assumed that design rules that can be formalized will be referred to as
constraints (de Vries et al. 2000). The word constraint has many different definitions in the
numerous fields of engineering. In this thesis however, the definition given in “Constraint
specification in architecture” (Niemeijer, 2011) is used: “a CSP [Constraint Satisfaction Problem] is
a problem composed of a finite set of variables, each of which is associated with a finite domain,
and a set of constraints that restricts the values the variables can simultaneously take”. Constraint
satisfaction is the process of arriving at a design solution that satisfies all of the constraints
(Dohmen 1995).

Designing products under a set of constraints, with the purpose to optimize the product
performance, is a challenge by engineering in general. The intention to program products by means
of automation under a set of constraints is addressed numerous research. According to Niemeijer

61

(2011), many industries are using several methods and techniques to automate design verification.
In electrical engineering, for instance, many steps of the design process are partly or fully
automated, including placement, routing and power optimization. In the field of software
engineering there are several ways of applying constraints to a unit of code, among which static
typing, unit testing and code contracts. They mostly have the same goal, but use a different
methodologies and techniques. All three mentioned approaches can be seen as a way to handle
constraints. They formalize the criteria that the code should satisfy and can be checked
automatically; thus preventing the programmer from making certain types of mistakes. In a lot of
respects, mechanical engineering is similar to building design. In both disciplines, three-
dimensional objects are designed that have to obey a series of constraints. Despite the similarities,
there are also clear differences between the two. Mechanical engineering has a much stronger
tradition of storing design semantically rather than only as the resulting geometry. There are
several, often complementary, avenues of research in this field such as parameterized solid model-
ling, feature based modelling, component-based or modular design, and constraint-based design
(Niemeijer, 2011). These will not be discussed in depth due to the demarcation of this research.

Constraints within AEC-industry
Given the fact that construction projects within the AEC industry are getting more complicated,
due to their technical complexity as a result of the high pre-defined set of requirements, the D&E
are more apt to develop strategies which are profitable to integrate these aims as effective and
efficient within the requested product. These requirements are basically the results of the demand
that the ordering parties have which can be formulated as the boundaries of restrictions in which
they desire their product to be developed in. These boundaries of restrictions form the ranges of
possibilities in which the D&E can move in order to program and design the corresponding product.

To manage design requirements, therefore, the following conditions must be met: (1) monitoring
to ensure that a design solution satisfies the requirements and (2) updating of the requirements
when project information that affects those requirements changes (Kim, Kim, Cha, & Fisher, 2015).
Within this research project, we assume that the product requirements evolve in a set constraints
that need to be satisfied. According to Niemeijer (2011), the building industry, and more
specifically, the architecture domain, has seen little adoption of constraints, at least not in the
sense that they are (fully) automatically checked in comparison to other industries. Naturally,
building designs have to comply with a multitude of constraints, such as building codes and
functional and technical requirements that follow from a client’s brief, but verifying these is still a
manual process in most cases.

Only in the past 30 years have constraints started to get some traction. A few example projects in
which constraints are used are: ‘Digital Dormer’ (Leeuwen, Jessurun, & de Wit, 2004) whereas legal
constraints are used for the design and permit approval of dormers, and the ‘SMARTcodes’ (Wix,
Nistbet, & Liebtich, 2008) that checks if the building models are in harmony with building codes
(Niemeijer, 2011). Recently prototypical model view checkers, for model instance validation of
Industry Foundation Classes (IFC) models (Zhang, Beetz, & Weise, 2015), have been developed by

62

use of constraints. The architecture, engineering and construction industry are exposed to several
types of constraints. According to Niemeijer (2011), architectural constraints can be subdivided
into many different types based on the topic of the constraint. Some of the more common types
are (Niemeijer, 2011):

 Geometrical constraints: Constraints on dimensions; e.g. the width of a certain door

 Structural constraints: Constraints regarding the strength of elements; e.g. loadbearing
capacity of a material

 Building physics constraints: Constraints about the climate of a building; e.g. the required
humidity in a room

 Material science constraints: Constraints in regard to the properties of materials; e.g.
porosity of a material

 Financial constraints: Constraints on the cost of parts of a design or the design as a whole;
e.g. the budget

 Aesthetic constraints: Constraints intended to achieve a certain look; e.g. the corresponding
amenity

According to Niemeijer (2011), three types of constraints can be identified. The first type are the
quantitative constraints (e.g. the height of the wall must be less than 3 m). The second type are the
qualitative constraints (e.g. windows cannot overlap). The third type, hybrid constraints, combines
elements of both. In this research the (fuzzy) hybrid constraints are the main focus for study.

3.4.2 Methods of using constraints
There are several ways to interpret constraints. According to Niemeijer 2011 there are two ways
of dealing with constraints, depending on who creates the design; the user or the computer. Both
approaches result in a design that satisfies the constraints, still they have different properties and
attributes and have different application domains. The first way to use constraints is by means of
constraint solving. The brief description of an example by use of this method is taking the constraint
as an input and trying to find a design that satisfies them (Kelleners 1999; Eggink et al. 2001;
Belbidia, Alby, 2003; Bohme, Cárdenas, 2006; Donath and Bohme 2007). The second way to
practice constraints is to produce a certain design and check afterwards whether the design meets
all the constraints, and adjust the design there where necessary (Niemeijer, 2011). This particular
method is called constraint checking. An automated constraint checking system will only be able
to check constraints that can be computed. This requires that constraints are both decidable and
computable (Davis, 1985; Sipser 1996). Decidability means that the function can be evaluated in
finite time. The constraints within the AEC-industry typically fall in one of two categories in terms
of computability: they either are simple guidelines or rules of thumb that can be quickly calculated;
or they require a computationally intensive numerical simulation (Niemeijer, 2011).

3.4.3 Constraint entry
Within the AEC domain, designers are the ones who will be entering the majority of constraints on
a day-to-day basis. This group can also be classified by means of gradients to express the division

63

of experience and knowledge within this group. However, given this assumption, the Graphical
User Interface (GUI) should be designed with this particular group their requirements in mind. The
goal is therefore to find a method of constraint entry that is easy for this group to work with. Myers
et al. 2006 states the following alternatives on this query which will further within the upcoming
sections.

Synthetic language-based constraint entry
The first possibility is to use a certain formal language in the form of a programming language. This
can be seen as a natural choice according to Niemeijer (2011) because the amount of expressive
power required of the constraint system is similar to that of a (simple) programming language and
because programming languages are commonly used to express rules in many different domains.
The main advantage of this option is that the implementation is relatively easy. In addition he
states, it is likely that at least a majority of all constraints can be formalized using a programming
language, based on the use of programming languages to encode constraints in other industries.
Niemeijer (2011) also states that the main disadvantage of this option is that programming
languages are very formal and require a great attention to detail in order to correctly express
oneself, which a lot of designers will likely not be used to. Besides from the precision required,
there is the additional issue that many programming languages have a syntax that will not be
familiar to non-programmers. Niemeijer (2011) elaborates upon this statements by the following
example: in Java the translation of the constraint “The height of windows in brick walls must be
between 1 and 2 m” might result in the following code:

if (wall.material == materials.Brick) {

for(window : wall.windows)
assert(window.height >= 1 &&

window.height <= 2); }

This piece of sample code reveals a few examples of syntax that differs from natural languages,
such as curly braces to define scope and the use of && instead of and (Niemeijer, 2011). Some of
these issues could be solved by using an Application Programming Interface (API) or a Domain-
Specific Language (DSL) targeted at defining architectural constraints (Spinellis, 1999). This could
possibly reduce the amount of unfamiliar syntax the designer has to deal with. Given the previous
example of the sample code, the constraint then might be expressed as something along the lines
of:

window.height between 1 and 2 for window in windows of wall if wall made of brick.

A decent example of a DSL that focusses on the reduction of unfamiliar syntax, to a point of
representing it like it is written in English is the Inform 7 programming language (Niemeijer, 2011).
It is a programming language specifically designed for creating textual adventure games. A short
extract of some sample code (Short 2011):

64

“The Law Library is north of the Great Dining Hall. “Many [books of precedent] line these walls,
containing every kind of contract that can be made to bind every kind of soul. A hole in the floor
descends to the other, less savory portion of this place.” Some books are scenery in the Law Library.
Understand “shelves” and “books” and “contracts” as the books. The description is “It is not as
though you would understand the language in which they are written.” The great contract book is
a thing in the Law Library. Understand “contracts” as the contract book”.

This code sample defines a room into two objects that are positioned in that room, and gives those
objects descriptions and synonyms, so that for example the command “look at shelves” will
produce the description of the books rather than providing an error message that the meaning of
the word shelve are unknown (Niemeijer, 2011).

Natural language-based constraint entry
Natural Language Processing (NLP) takes the concept of removing unfamiliar syntax to a new level.
This due to the fact that it allows the designer to enter the constraints in a natural language, such
as English. This is very different, from a technical standpoint, in comparison to programming
languages and DSLs. NLP discards the requirement for training on the part of the designer, since he
or she can use the language where he or she is familiar with. However, it increases the difficulty of
the implementation significantly, as natural languages are far harder to interpret by machines than
programming languages. This problem occurs since natural languages have not been designed with
automation by interpretation in mind. Using the previously defined constraint again, we could
express it in any of the following, and a multitude of other, ways (Niemeijer, 2011):

- The height of windows in brick walls must be between 1 and 2 m
- Windows in walls made of brick must be between 1 and 2 m high
- The height of any window in brick wall must be higher than or equal to 1 m and lower than

or equal to 2 m

According to Niemeijer (2011), the first and foremost difficulty in interpreting natural language is

the presence of ambiguity. The exact meaning of words can depend on the context, unlike

programming languages. Thereby, there are different types of ambiguity (Hutchins 1992), given:

Category ambiguity
This prompts by ambiguity regarding the grammatical category (noun, verb, etc.) of a word. This
can be grounded by, for instance, the use of the word set in the following sentences: “I set the glass
on the table”, “They are part of a certain set”, “Is she set?”

Homography
This type of ambiguity can be described by two words that contain the same spelling which are
having a different meaning. Interpret, for instance, the following sentences: “Her ear was infected”
and “She ate an ear of corn.”

65

Transfer ambiguity
This case of ambiguity goes for the same word that are having different meanings in different
languages. Compare for instance “I had a chat with her” and “le chat est sur la table.”

Structural ambiguity
This type of ambiguity can be described by one sentence having multiple different interpretations.
Given, for example, the following sentence: “Flying helicopters can be dangerous” can mean both
“It can be dangerous to fly helicopters” and “Helicopters which are flying can be dangerous.”

According to Niemeijer (2011), ambiguities can be resolved by means of different methods and
techniques, such as context and real-world knowledge. However, these remain hard to simulate.
Supporting natural language input can be made way more feasible by restricting certain language
constructs, such as metaphors. Niemeijer states the following general rule; “The more formal and
specific the language used, the easier it is for a computer to interpret”.

Visual constraint entry
The three categories (programming language, DSL, natural language) as mentioned according to
Niemeijers work “Constraint specification in Architecture” within the previous paragraphs cover
different types of text-based constraint entry. However, this is not the only possible method since
it is also possible to use a graphical interface (Niemeijer, 2011). One way of doing this by means of
this technique is to represent the constraints as trees, mirroring their internal structure (Myers
1990). Examples of this technique include ConMan (Haeberli 1988), Microsoft’s Visual
Programming Language (a programming language for a virtual robotics environment) (Microsoft
2011) and Yahoo Pipes (Yahoo! 2011), which is a manner to customize RSS feeds.

This particular approach has the advantage over text-based constraint entry (Niemeijer, 2011). This
due to the fact that the capability of such system is exposed to the user, given the fact that all the
blocks that are available for use are listed in front of him of her. It is way harder to predict whether
a certain expression will be supported or not by use of a text-based system (Niemeijer, 2011). The
downside of this technique is the readability, especially with more complex trees available the
function of the constraint will not be immediately that natural (Niemeijer, 2011). Another method
that can be used to solve this issue is a hybrid between the tree structure and natural language
solutions (Niemeijer, 2011). According to Niemeijer, here, the principle is to construct natural-
language sentences from blocks. An approach similar to this is used in Lego Mindstorms NXT
(National Instruments 2011), an environment for programming Lego robots.

An alteration on this method is to use a 3D visual programming language, such as presented in “The
CUBE language” (Najork and Kaplan 1991). However, the practical use of this seems very limited,
as it is not easy to quickly see the meaning of a rule (Niemeijer, 2011). Thereby, it complicates
interaction with the constraint since a 3D environment requires orbiting as well as panning and
occlusion may prevent the entire constraint from being visible at once (Niemeijer, 2011).

66

3.4.4 Conclusion
This part of the review of literature has been conducted to allocate the research problem and

development objective(s) as a function of automation. Client specific requirements are known to

be formalized and answered whenever their corresponding specifications satisfy the specific need.

This implies that specifications are constraining the decision bandwidth of the D&E.

The challenge prior to the early design stages of requirement engineering is mostly related to

constraint solving rather than constraint checking. During these stages, solutions are required to

solve, and therefore satisfy the client’s need. In later stages, during verification and validation of

requirements for the variety of object levels, requirements are rather checked than solved. This is

a very crucial difference in principles that will be accommodated within the prototypical system its

functionality.

Requirements can constraint several aspects, depending on its domain of application. Within the

AEC-domain, however, constraints are most likely to be categorized in linguistics, legal,

geometrical, structural, building physical, material technical, financial, and aesthetical aspects.

These aspects can all contain numerical and non-numerical specifications within their properties

and attributes. The process to distill a specification for a linguistic description seems to be very

error prone, especially in cases where D&E are unfamiliar with the type of linguistic descriptions.

This due to the fact that requirements are not always stated by means of numerical expressions,

but rather as linguistic constraints where numerical specifications need to be derived from. Having

a system in which former translation procedures have been stored in, what can be consulted for

queries, might be a very useful technique to reduce errors during these processes. This could

reduce or even discard the categorical, homography, transfer and structural ambiguity by

interpreting such requirements that contain linguistic constraints. Natural language is not designed

with automation in mind. This contributes to the 3rd layer of ambiguity. This 3rd layer of ambiguity

occurs by feeding the computers with natural language constraints.

The variety of techniques to process natural language are often very complex from nature and

labor intensive. This is especially the case for domain related language where few or insufficient

libraries are developed for. Machine learning can therefore be a challenging job, given the fact that

certain libraries need to be built up from scratch. There were libraries exist, formats, standards,

and semantics often need to be revised and synchronized. This can be laborious and therefore

expensive in practice. For the development objectives of this research initiative, there has been

chosen to use ‘hash-tables’ rather than ‘natural language processing’ as the technique to process

natural language due to the sake of brevity and experimental nature of this development attempt.

In this attempt, words, definitions, classes, and specifications are tokenized. This is the

fundamental hierarchical data structure where the sentences (client specific requirements) will be

dissected with. This is also closely related to the formal notation that will be developed later on to

fill, enrich and store data and information within the prototypical system its database as a function

of knowledge gathering.

67

4 In-house practices

4.1 Motivation
The goal of this research initiative is to investigate the design process, the current practice of

requirement interpretation and translations into product specifications, and the possibilities to

introduce automation for the translation of non-functional client requirements into product

specifications. The fundamental goal of this initiative is to improve this specific process prior and

during the early design process. To achieve this, besides the review of literature, a review of current

practices in the design process is required. This approach could possibly identify automation as a

pragmatic mean within the design process. Therefore, review on the current in house practices is

initiated and executed to create a practical environment. This review on in-house practices is

initiated and executed in collaboration with several field experts. Several interviews are held with

field experts to demarcate an accurate representation of the current translation procedures. This

is done to link and confirm the knowledge of the design and verification process in practice. This

approach brings this research closer to the origin where problems are occurring, and where

scenarios can be defined to introduce automation. The interviews are short from nature, and are

structured according the demarcation of this research initiative.

4.2 Interview
Within this chapter, the research questions will be included as part of this qualitative research. The
obtained knowledge from the interviews are used to address the actual situation, along with the
problems that the experts are coping with during the translation of non-functional requirements
into product specifications in early design stages. This research focuses on elements from the
client’s briefing stage and the design stage(s) where non-functional requirements are being
interpreted and translated into product specifications. The goal for the interview per research
question, and sub questions, will now be discussed.

1) What client specification procedures are there in use within the design process, and how

does Systems Engineering support these procedures?

2) What variety of client requirement types are known within the design process, and which

of these carry risk in terms of non-conformity?

3) What is the current practice in the AEC industry for translating client specific requirements

into product specification, and how do verification procedures safeguard these?

4) What can automation, for translating client requirements into product specifications,

contribute to the design process?

5) What are the current techniques within the AEC-domain, by means of automation, to

translate product requirements into product specifications?

6) Is it possible to develop a method that translates and stores physical, functional, and non-

functional requirements into product specifications by means of automation?

68

1) What client specification procedures are there in use within the design process, and how does

Systems Engineering support these procedures?

There are two parts which will be reviewed upon, given: the design process where the non-
functional requirements will be translated and systems engineering within the AEC-industry. The
current procedures in regards to the integration of client specific requirements will be analyzed as
a function of the design process. The defaults and failures, which most often occur during the
design process and Systems engineering process, are discussed upon in the interviews to measure
what types of issue are actually occurring. The required adjustments for process improvement are
also treated. The fundamental preconditions and system requirements are also treated for
(evolutionary) prototyping. The goals are:

- Identification of the problems and their origins that occur during the interpretation and
translation of requirements into product specifications in the early design phase;

- Identification of the problems that are occurring prior and during the implementation of
systems engineering prior and during the design process;

2) What variety of client requirement types are known within the design process, and which of

these carry risk in terms of non-conformity?

The goals related to this research question are to discover and capture what kind of requirements
are known, how these can be categorized, and how a requirement is structured. To improve the
process of working with requirements, the problems with verification of requirements are also
treated. The goals are:

- Explore how client specific requirements are structured;
- Explore, categorize and capture the different kinds of client specific requirements in

construction projects;
- Define which type of requirements is provoking the most problems of interpretation and

translation procedures into product specifications;

3) What is the current practice in the AEC industry for translating client specific requirements into

product specification, and how do verification procedures safeguard these?

The total process of requirement interpretation, translation and verification needs to be outlined
in order to analyze where the use of automation can come in to practice. These overall processes
are therefore required to be evaluated upon. Here, the essentials for a good verification process
will be discussed to identify the conditions of good verification within a design process. The relation

69

with the design process is carefully investigated. The requirements of which the verifications that
are known to be the hardest and most risk full will also be treated. The goals are:

- Identification of the types of errors that are occurring, and where they originate from;
- Identification of key elements for a proper verification;
- Relate the design process to the verification process;

4) What can automation, for translating client requirements into product specifications,

contribute to the design process?

The implications for automation within interpretation and the translation during early design

processes needs to be observed. This would make it possible to set a scope, by means of system

requirements, for prototyping. This development process will be treated within the next part of the

research. These preconditions are discussed together with the pros and cons of automating these

procedures. The goals are:

- Identification of the improvements required within the design process prior the

introduction of automation;

- Definition of the pros and cons of automated requirement translation into product

specifications;

- Definition of the preconditions for the automation of translation procedures;

5) What are the current techniques within the AEC-domain, by means of automation, to translate

product requirements into product specifications?

6) Is it possible to develop a method that translates and stores physical, functional, and non-

functional requirements into product specifications by means of automation to develop a certain

(semi) automated system?

Here, a brief exploration towards the use of information systems in relation to natural language

processing and constraint specification is executed. The experiences from the past along with the

actual approach by processing natural language and constraints, as obtained from demand

specifications, are addressed and treated within these questions. The goals are:

- Identification of the actual methods and techniques to interpret, convert, and capture

information and data as obtained from the client’s brief;

- Identification of the trials and problems of these initiatives to explore the “The quickest

wins” for system development.

70

4.3 Definition of subjects
The goals for the previous interview questions can be classified to 3 subthemes. These subthemes

are the design process, knowledge management, and natural language constraints in Architecture,

Engineering and construction. The goal per subject will now be treated:

Design process and Knowledge Management
The design process and knowledge management will firstly be analyzed. Treatment of this subject

could provide fundamental insight in the current practice by translating client requirements into

product specifications. This could determine where the biggest problems are originating from.

Procedures in relation to communication, file and information exchanges are closely observed.

How data, information and knowledge is processes and captured, by means of the variety of

techniques, is also questioned upon. In this way a clear insight can be given in what sense mistakes

occur. This gives also the opportunity to measure the synchronicity between the domains of

Building Information Management and Systems Engineering in regards to the design process.

Natural language constraints within the AEC-industry
This subject positions requirement translation procedures in relation to constraints specification.

This could identify the variety of methods and techniques that are used in practice for translating

non-functional requirements into design constraints. The current practice and use of information

systems, expert systems, and knowledge based system will be discussed. From here on, the

fundamental system requirements in relation to software development can be treated.

4.4 Interview results
The interviews as held, functioned as a research instrument additionally to the literature review.
The literature review was introduced to measure how science is covering this research problem,
and the interviews were held to measure the same problem(s) in practice. Field experts with
different backgrounds have been interviewed. The interviewees work at certain departments of
Systems Engineering & BIM, and fulfil the roles as principle systems engineer; systems engineering
program manager; and verification and validation manager.

The goal of this interview was to measure how the design process can be improved by looking into
the process of design and verification to observe how the information flows are treated within this
process. The observations obtained from this process could address and position the use of a
(semi)automated system as a function of the translation procedures. The combination of the types
of interviewees broadened the scope and created the possibilities to address the research scope.
The interviews were held in a semi structures way. Initially, there were guidelines of questions that
were followed. However, the interaction during these interviews provided opportunities to deviate
from these questions to obtain more specific information and examples. Therefore, sub questions
were created during the interviews in regards to the main interview questions.

The interviews have been recorded and transcribed for analysis per research question, this made
it possible to draw conclusions per answer of a respondent. These conclusions have been captured

71

and have been reflected between the answers of the different respondents. The conclusions per
question have been evaluated upon. Finally, the conclusions per question are merged into a total
conclusion per subject. This chapter ends by sharing the observed findings by means of answers on
the initial research questions.

4.4.1 Design process
The introduction and use of integrated contracts implicates evidence of product performance.

Proving the product performance is of great importance. The information which provides the

specific type of proof is required to be valid and consistent. The respondents pointed out that the

main problem in the design process can be found during the information streams during client

specification procedures. There are a few information streams which are identified. The first

category is the customer requirements information; that is crucial. This is found as the stream

where the translation is made from customer requirements to preconditions for design. Creating

the information on design solutions implies answering the customer requirements. The right

interpretation and understanding of the client specific requirements are essential in order to

achieve the product performance and functioning as the client desires. The parts where

requirements are applying to need to be clarified. This approach on regulating information streams,

provides the opportunity to structure information in order to allocate this to a part of a design. The

definition on which parts of the product specific requirements apply dictates where the answer

should be given.

Allocation of the requirements is required in order to link the specific need to a specific part of the

design. Here, a problem arises given the urged need for a system design before allocation can be

executed. It is very difficult to come up with a proper system design in early design stages,

especially by a lack of design competence. For doing this, rough bandwidths in which designs can

be configured need to be formulated. The allocation should be done with precision to harmonize

the relation between client specific requirements and system configuration; this is a crucial

process. Major problems can occur from missing allocations to parts of the design when this

allocation procedure is not done adequately. There is found that a system is already configured

within this stage form constraints as derived from product requirements. In this (roughly)

configured system, the relations between elements is already made from information which is

derived from the requirement specification. There can be stated that whenever a clear definition

of the system is missing, mistakes can occur during the design process which makes it even harder

to structure the proof process of the product performances.

However, there are conditions which need to be met before the total process can be proven to be

working. Firstly, verification due to the correct interpretation of the requirement needs to be

achieved; this is very crucial. Requirements need to be defined and captured unambiguously in

accordance with the client. Then, the second step is the allocation of requirements. The system

needs to contain the right information on its right places, it needs to communicate the same

information as captured in the first (conditional) step. Therefore, a good interpretation and

72

allocation are the first measures to prevent this. There is also a variety of other information that

needs to be allocated to objects and requirements. The fundamental reason why this process needs

to be executed securely is to enrich both the model and the information, by harmonizing them with

the same information. The alignment in regards to the allocation of requirements and objects,

acting disciplines, level of risk, level of detail, responsibilities, applicable design phase(s), and

verification procedures need to be treated coherently.

4.4.2 Interpretation of requirements
Field experts found that it is common sense that clients often don’t know what they exactly want,

how it should look like and how their product should function. This especially during the early

design stages. Here, the experiences off designers and engineers should come in to practice in

order to capture the specific demand specification as clear as possible. The content of client’s briefs

are often ambiguous and hard to process. This due to the fact that chunks of natural language are

used to describe functions and performances of the desired product. The interpretation of a design

can vary greatly among interpreters as the requirements are often written in natural language. This

process is very critical since both interpretation and client desires need to be synched and

captured; this is mainly the bread and butter within the domain of architectural design. This

procedure is especially complex by demand for products where both designers and contractors are

unfamiliar with. The validation from the client of the interpretation of a design is therefore from

great importance. The possible reason why deviations occur is the ambiguity in the definition of

specific requirements as stated in the client’s brief. In order to prevent design mistakes, the

interpretation need to be discussed and captured before formalization. This is very crucial, since

this could contribute to minimize and prevent contradictions in later phases which are most likely

very unprofitable.

In cases where the demand specification is assumed to be complex, especially when both the

designing party as contractor aren’t familiar with the type of product that is asked, extended

requirement analysis should be introduced. The main findings why this extended requirements

analysis procedure isn’t done within the AEC industry can be explained by the following

fundamental reasons. The first reasons is that the AEC sector is used to start designing straight

away and adjusts its design during the iterative design process. This causes the insufficient time

that there is taken to correctly, fully, interpret the need of the client. The second reason can be

explained by the fact that the investment costs of extended requirement analysis are earned back

after a tender is won. Not every tender is won though, this makes it an unprofitable procedure to

introduce for each project. Therefore, it is very important to have specialists reviewing the

necessity of such extended requirement analysis since this can be very profitable for contracting

complex projects, especially by collaborating with specific clients. Understanding the client needs

is a core element to win a tender since this dictates the fundamental design constraints in which

design decisions need to be configured. Numerous researchers are contributing to science by

investigating on strategies to exploit this opportunity. The plurality of applicability of a certain

73

requirement is also known to create difficulties by interpretation of requirements. Numerous

requirements as stated within the clients brief could be filled in by multiple elements. A

requirement can be filled in by a combination of different objects; a requirement can have

interfaces with multiple objects. Thereby, an object can have multiple requirements applied.

Designing the complying object is very complex if these two things aren’t distinguished clear

enough.

The interviewees are asked to distribute requirements in classes. They were simply asked to

distribute the requirements according to simple, hard, or complex by interpretation. It has been

found that the interpretations and the plurality in applicability of non-functional requirements are

known as the essential factors which affect the complexity of a requirement. This can also be found

in requirements which are identified as the most complex requirements; the non-functional

requirements. The non-functional requirements are designated as the most complex requirements.

This due to the fact that they need stimulation to prove their performances, especially by multiple

interfaces. More specific, there has been found by the answers of the respondents, that comfort

and aesthetic related requirements are the most failure sensitive by programming.

The following schemas visualize the schematic representation of the requirement interpretation

and translation procedures. The experts are known to implement these approaches as means to

interpret, translate, allocate and verify requirements as a function of product design. The upcoming

schemas are practical representation of these workflows.

74

Requirement retrieval

Assessing requirement
on SMART principle

Verification planning

Execution of
verification plan

Verification

Interpretation of
requirement as
obtained from
client s brief

Knowledge and
tactical driven
analysis on the
characteristics of
the requirement

Processive detection
point of lexical
ambiguity

Allocation
requirement(s) to
parties as a function
of a certain design
phase

Integration of
requirement(s) in to
specific design

Execution of
verification in order
to obtain validation

2

3

4

Determining
interpretation of

requirement

The process where a
(semi)automated system can be
introduced as a support tool for

translation query's

Figure 13: Activity diagram 1: The interpretation, translation

and verification process.

Figure X: Activity diagram 2: Assessing requirements on SMART

principle.

Figure X: Activity diagram 1: The interpretation, translation

and verification process.

Figure X: Activity diagram 2: Assessing requirements on SMART

principle.

75

Record preliminary
interpretation

Communication with
client on interpretation

Capturing the
formal
interpretation of
the requirement
by designer for
communication

Determining
interpretation with

client

RIGHT

WRONG

Recording final
interpretation of

requirement

Communication of
the interpretation
with client for
approval

Determining the
interpretation by
means of a
iterative process
with client

Recording the final
interpretatIon by
design executive

Dissection of
requirement into

interfaces
2.1

Decomposition
and allocation of
derived
requirements to
responsible parties

Figure 14: Activity diagram 2: Assessing requirements on SMART

principle.

Figure X: Activity diagram 2.1: Dissection of requirement into

interfaces.

Figure X: Activity diagram 2: Assessing requirements on SMART

principle.

Figure X: Activity diagram 2.1: Dissection of requirement into

interfaces.

76

Requirement
classification for

prelimenary design

AMBIGUOUS

Check for interfaces
with other disciplines

Check for interfaces
with other disciplines

UNAMBIGUOUS

NO

1) Definition of
solution area;

2) Determination of
derived requirements

(specification)
2) Capturing concrete

design solutions

1) Allocation of
responsible parties;

2) Definition of
solution area;

3) Determination of
derived requirements

(specification)
4) Capturing concrete

design solutions

YESNO

1) Allocation of
responsible parties;

2) Definition of
solution area;

3) Determination of
derived requirements

(specification)
4) Capturing concrete

design solutions

YES

Configuration of
requirement is
monodisciplinairy
but requires
communication
with client

Configuration of
requirement is
monodisciplinairy

Configuration of
requirement
requires hollistic
approach

Configuration of
requirement
requires hollistic
approach and
commucation
with client

The determination
process of the
complexity and
ambiguity of the
requirement

1) Definition of
solution area;

2) Determination of
derived requirements

(specification)
2) Capturing concrete

design solutions

Communication with
client for conformity

Research and
communication with

client for approval

APPROVED

Capturing knowledge
in relational database

Capturing knowledge
in relational database

REJECTED

Capturing knowledge
in relational database

Communication with
client for conformity

Research and
communication with

client for approval

Capturing knowledge
in relational database

REJECTED

APPROVED

Figure 15: Activity diagram 2.1: Dissection

of requirement into interfaces.

Figure X: Activity diagram 2.1: Dissection

of requirement into interfaces.

Figure X: Activity diagram 2.1: Dissection

77

Check for
monodisciplinarity of

requirement

NO

Check for concreteness
of requirement

Check for concreteness
of requirement

YES

NO

*Interpretation is ruling

1) Define phase;
2) Allocate parties;

3) Assign Verification
method

4) Define planned
evidence document

1) Define phase;
2) Allocate parties;

3) Assign Verification
method

4) Define planned
evidence document

YESNO

*Interpretation is ruling

1) Define phase;
2) Allocate parties;

3) Assign Verification
method

4) Define planned
evidence document

1) Define phase;
2) Allocate parties;

3) Assign Verification
method

4) Define planned
evidence document

YES

Requirement is
classified as
beeing complex
and ambiguous
design executive

Requirement is
classified as
beeing fuzzy by
design executive

Requirement is
classified as beeing
elementary and
unambiguous by
design executive

Requirement is
classified as
beeing complex
design executive

Figure X: Procedure: Verification planning.

Figure 16: Activity diagram 3: Verification

planning

Figure X: Activity diagram 4:

VerificationFigure X: Activity diagram 3:

Verification planning

Figure X: Activity diagram 4: Verification

Figure X: Evolutionary prototyping

process.

Figure X: Activity diagram 4:

VerificationFigure X: Activity diagram 3:

Verification planning

78

State measure(s)

Requirement proven

FULLFILLED

UNFULFILLED

Apply measure(s)

Requirement verified

The actual verification check
according to a specific
verification method on a
specific design

Verification proces approved if;
1) evidence document(s), 2)
date, and 3) responsible
verification managers identity is
captured in relational database
(Relatics)

The definition process of specific
measures regarding the
fulfillment of the requirement

Figure 17: Activity diagram 4: Verification

Figure X: Evolutionary prototyping

process.

Figure X: Activity diagram 4: Verification

Figure X: Evolutionary prototyping

process.

Figure X: Use case 1, use case diagram:

TRANSLATE, Bank of Knowledge.

Figure X: Evolutionary prototyping

79

4.4.3 Verification
There has been found that the quality of verification depends on the process that takes place prior
are requirement is finalized. Verification is only deemed relevant if the steps after the verification
procedure are defined properly. This basically implies that preconditions are required to be met
before verification can start. The answers obtained from the interviews, made it possible to define
the pre conditions for the total verification process: the interpretation of the client specific
requirements must be communicated and validated by the client; the allocation of requirements
to elements must have been done in a sense that all the elements which a requirement is applying
to are allocated and captured; the definition process, of whether a verification complies or not,
must be done in a way that an unambiguous answer can be given as a respond to the satisfaction
of the initial requirement; the definition of the LOD of a design, allocated as a function of time
according to the level of risk, must be done adequately; requirements which are assumed to
contain a higher level of risk should be monitored very closely since this could prevent the discovery
of defaults in later stages; the level of detail in regards to different disciplines need to be defined
clearly to validate the verification due to the fact that different levels of detail come from different
disciplines which can instigate problems by revisions.

The core elements of the verification process are closely related to the definitions as laid down
within the design process. The core elements of verification is to construct the right comparisons
between building information and building model. This implies that the comparison of a
requirement and object must be executed correctly and defined unambiguously. This implies the
following steps that correspond with the actual process: preparation: the definition of the defined
elements as used in the verification must be unambiguous. This is mostly realized in the design
phase where the allocation is defined; defining the verification plan (procedure): the process of
structuring the right procedure and assigning the right rules of verification; verification during the
design process: the verification can be executed and documented after the verification procedures
is defined and the elements are designed.

4.4.4 Requirement classification
There has been noticed that classification of client specific requirements has multiple definitions.

A clear difference between the following three types of requirements is defined according to the

following distribution: value (numerical) requirements; relational requirements; textual

requirements. As described within the problem definition of this research initiative, textual

requirements often are difficult to handle since they are sensitive for misinterpretations. Besides

the classification in measurability, also difference by interpretation among the various disciplines

within the AEC industry has come forward. Technical requirements are known to be different than

architectural requirements. These requirements are known to be mostly related to different

qualities of a building. For instance, technical requirements are known to be related to comfort

requirements, whereas architectural requirements are more often related to aesthetics. It is

generally assumed that a requirement will be marked as complex whenever it is not tangible or

measurable.

80

4.4.5 Automation of translation procedure
The initial (automated) translation procedure for the translation of requirements into product
specifications is not researched upon that greatly by researchers from the AEC industry, especially
in case of non-functional requirements. The interviewees emphasized that it is hard to translated
physical and functional requirements by means of automation, given the fact that information on
design decisions from the past have never been captured by means of standards and semantics.
The decisions from the past are not usable given these circumstances. This makes it even more
challenging to initiate a first attempt to automate this process for the class of non-functional
requirements. The interviewees pointed out that it is very difficult to automate the translation
procedure of non-quantifiable, more qualitative requirements (look and feel requirements) given
the previous reasoning. There are no standards in what quality requirements can be compared to
according to knowledge as gained from previous projects. Among the interviewees, having a
system that could prompt users with experiences from the past, by the dissection of non-functional
requirements, is assumed to be very useful as a support tool by decision-making during the design
process. It is assumed that this could improve the process of client / designer interaction. A very
important pre condition for using information by the design of such automated system is that it
should be able to use input information of verified and validated projects from the past.

The preconditions for a system that automates the requirement translation procedure have been
interviewed upon. There have been several trials and demonstrations in which attempts have been
initiated to automate this procedure. There has been tried to interpret text from client’s briefs by
use of semi-automated techniques to enrich this information in terms of SE information and data
to support the SE process. These attempts were unsuccessful given the following reasons:

1) Specific knowledge on lexical analysis, requirement ontologies, standards and semantics
are missing on an organizational level;

2) The organization is used to build after design, rather than design and build which results in
a lack in functional design competences;

3) Yet, there is no standard in which concepts are captured, there is no formal language in
which requirements can be defined and interpreted by both human and computers;

4) Information and data is not delivered nor captured by means of a standard structures or
file formats.

There is found that this process could be automated if the following input can be provided to feed
such a system:

1) Validated interpretations of requirement with client and users as obtained from previous
projects;

2) Availability of a set of dissected requirements, as programmed in previous projects, that are
represented in a measurable state;

3) Allocation of requirements and objects, as done in previous projects;

81

4) Availability of the total amount of information in regards to the verification procedure, as
executed within previous projects.

This implies that the total process which happens before verification, as obtained from previous
projects, is captured in a clear and consistent way. If this is done, then it could be possible to consult
this information to ground reasoning by decision making during design stages. The definitions of
requirements and corresponding verification method should be clear to safeguard that the valid
data is used as knowledge. This could also prevent a lot of rework by each project, given the fact
that reasoning by decision making is captured by means of standardization that can be reused.

The interviewees emphasized that it can be very hard to capture each and every single decision by
the translation of non-functional requirements by several reason. The first reason is due to the fact
that the AEC industry is working pragmatic rather than systematically. There has also been found
that the tight planning in which requirements analysis are planned is not offering the possibility to
do this in detail, especially in case of bigger complex projects with numerous amounts of non-
functional requirements. This implies the need for a certain information system that can be
consulted within the early design stages to consult for specific queries. This system could provide
knowledge on what decisions have been taken by the translation of certain non-functional
requirements from previous projects.

The eventual way for designing this automated translation system is also questioned upon within
the interviews. These fundamental system requirements are captured as follows:

1) The fundamental operational functions such as Create, Read, Update and Delete (CRUD),
need to be accommodated in the system;

2) The system needs to be capable to run automated lexical analysis to dissect the linguistic
chunks of text, in which product requirements are listed, within a client’s brief;

3) The system needs to be able to store enrich words, as obtained from the dissected text, by
means of state of the art knowledge to formulate the possible meaning(s) of the word
within a sentence;

4) The systems needs to be able to allocate the enriched words in relation to the subsystems
by means of a standard system distributions, such as the NL/SfB;

5) The system needs to capture and distinguish the translation of the definitions of obtained
words in relation to other acting disciplines, assuming that these definitions can vary;

6) The system needs to capture the final specification of the word(s) to formulate a product
specification that satisfies the initial requirement;

Chapter 5 will treat the evolutionary prototyping process according to this fundamental set of
system requirements.

82

This page is intentionally left blank

83

5 Model

5.1 Method

5.1.1 Evolutionary prototyping
This paragraph addresses the fundamental reasoning for the selection of a certain prototyping
method. Numerous researchers have contributed to knowledge regarding the variety of
prototyping techniques. This research has introduced both a literature review and an investigation
on in-house practices to explore the required knowledge for the development of the desired
system, and to derive and measure the client’s needs for the development of a certain system in
which requirements can be interpreted, translated, allocated and specified. During the early stages
of this research initiative, there has been found that the interviewed experts were very interested
in the development of such system. On the other hand, there has been found that their detailed
requirements for the development of such a system were yet fuzzy. The operational functionality
of the desired system was clear, however, specific requirements for detailed software
development were in default. The in-house practices functioned therefore as the instrument to

measure the necessity of such a system within the business process, and what the fundamental
requirements of such system should be. This was an iterative process which evolved over time.

The detailed client requirements weren’t clear enough at the beginning of this research initiative,
which made it hard to introduce static prototyping technique(s). Therefore, the in-house practices
functioned as a great mean to discuss, collect and evaluate client requirements regarding software
development. The clearance of the requirements of the operational functionality of the system was
one of the main reasons to introduce evolutionary prototyping over other prototyping techniques
such as ‘Throwaway/Rapid prototyping’ or ‘Extreme prototyping’. The fundamental definition of
an evolutionary prototyping approach can be explained by the incremental development of
software where an initial prototype is produced and refined trough a number of stages, before
achieving the final system (Beaudouin-Lafon, Mackay, 2007).

This approach is very pleasant to introduce where client requirements are fundamentally clear
from nature, but somehow fuzzy in detail. The clearness reflects in the operational quality that the
system should accommodate; the fuzziness reflects in decisions which yet need to be made
according to trial and error. By this approach, parts of the systems can be developed and optimized
by means of the interaction between developer and the field experts. Then, additional system
requirements could grow as a function of the development process. Hereby, numerous of
additional system requirements can be derived and formulated, and significant parts of the system
can be developed to design the core concept of the system. This also gives the client the
opportunity to be more influential during the system development stages which verifies whether
the most recent developments are matching the desired outcome.

84

Design Build prototype

Feedback is
provided

User tests
prototype

Refine the
prototype

Final product

Within this development process, the evolutionary prototyping process has been dissected in 6
parts. During the Design stage, the client requirements are interpreted and verified with the client.
These fundamental system requirements are the foundation for the development of the model.
The first version of the prototype will be built within the Prototyping phase. Here, the initial client
requirements are accommodated within the functionality of the system. This system will be
introduced to the client for a User test of the prototype. The client will use, analyze and evaluate
the delivered prototype and report the feedback. After the obtained customer’s feedback, the
revision of the model can be made within the Refining stage, then the prototype can be delivered
to the client in order to execute a User test gain, this is an iterative process until the functionality
of the system has been achieved. Whenever the desired system performances are achieved, then
the Final development can be started. Even during this stage, the client might state additional
requirements. In this case, the development loop will be introduced again to refine the system its
functionality. After the Final development phase, there is assumed that the functionality of the
system is matching the desired requirements of the client.

Generally speaking, a prototype is used during its development. The prototype is not used only for
feasibility analysis or for evaluating other types of system requirements, but also for the creation
of user interfaces. This part needs to be emphasized within this paragraph given the fact that this
system needs to be very pleasant to deal with by the layman. User interface (UI) prototyping is an
iterative development technique in which users are actively involved in the design of the UI of a
system (Beaudouin-Lafon, Mackay, 2007). However, the user interface prototype is built early,
before the whole system was analyzed, designed and implemented (Beaudouin-Lafon, Mackay,
2007). This gives the client a good understanding of what it desires. Therefore, user interface
prototyping has also been introduced before the prototyping process. This could measure and
optimize the user experience whenever consulting the system. This process was structured in two
stages, given the mock-up stage and the implementation of the mock-up stage. The mock-up stage
was very useful. This process revealed what the system should look and operate like by means of
client / developer interaction. The implementation of the mock-up stage was introduced to

Figure 18: Evolutionary prototyping process.

Figure X: Use case 1, use case diagram:

TRANSLATE, Bank of Knowledge.

Figure X: Evolutionary prototyping process.

Figure X: Use case 1, use case diagram:

TRANSLATE, Bank of Knowledge.

Figure X: Use case 1, Activity diagram: TRANSLATE,

Bank of Knowledge.

Figure X: Use case 1, use case diagram:

TRANSLATE, Bank of Knowledge.

Figure X: Evolutionary prototyping process.

Figure X: Use case 1, use case diagram:

TRANSLATE, Bank of Knowledge.

Figure X: Evolutionary prototyping process.

85

integrate all of the additional requirements that were obtained from the mock-up stage. This
process has been executed previous and parallel to the iterative prototyping process of the system
itself, wherefore numerous additional requirements have been obtained.

5.1.2 System requirements
As described within paragraph 5.1.1, the system is developed by means of an evolutionary
prototyping approach. This due to the fact that the fundamental operational functionality of the
desired system were captured by means of the in-house practices that provided the possibility to
interact with field experts to optimize and introduce additional system requirements.

The fundamental system requirements that are captured and used for the initial development
stage are as follows:

1) The fundamental operational functions such as Create, Read, Update and Delete (CRUD),
need to be accommodated in the system;

2) The system needs to be capable to run automated lexical analysis to dissect the linguistic
chunks of text, in which product requirements are listed, within a client’s brief;

3) The system needs to be able to store enrich words, as obtained from the dissected text, by
means of state of the art knowledge to formulate the possible meaning(s) of the word
within a sentence;

4) The systems needs to be able to allocate the enriched words in relation to the subsystems
by means of a standard system distributions, such as the NL/SfB;

5) The system needs to capture and distinguish the translation of the definitions of obtained
words in relation to other acting disciplines, assuming that these definitions can vary;

6) The system needs to capture the final specification of the word(s) to formulate a product
specification that satisfies the initial requirement;

The fundamental system configuration, operational functionality and graphical user interface are
obtained iteratively.

86

5.2 Use Case(s)

5.2.1 Use case 1: TRANSLATE
The initial use case of this system can be explained by its allocation as a function of the business
processes. The use, allocation, system requirements, and the functionality of the desired system
has been captured within section 4.4. To be more specific, the following use case(s) and use case
text(s) that are presented within the upcoming paragraphs have been developed prior the
development stage. The first use case, TRANSLATE, is presented in Figure 19 and Figure 20 beneath.
This use case diagram communicates the use of the final systems by its user for translating a client
specific requirement into specification a product specification.

Command lexical analysis on input

Convert requirement into allocated
specification

Inserts requirement

Consult output file 1, 2, and 3

Execute web based lexical
analysis

Find design specifications in
database

Parse the input

<<include>>

<<include>>

<<include>>

Figure 19: Use case 1, use case diagram: TRANSLATE, Bank of Knowledge.

Figure X: Use case 1, Activity diagram: TRANSLATE, Bank of Knowledge.

Figure X: Use case 1, use case diagram: TRANSLATE, Bank of Knowledge.

Figure X: Use case 1, Activity diagram: TRANSLATE, Bank of Knowledge.

Table X: Use case 1, Use case text: TRANSLATE, Bank of knowledge.

Figure X: Use case 1, Activity diagram: TRANSLATE, Bank of Knowledge.

Figure X: Use case 1, use case diagram: TRANSLATE, Bank of Knowledge.

87

Actor starts system
Actor imports
requirement

Actor commands
 generate design to

retrieve specifications

Actor contacts client
about the notice of

default

Assign actor to revise
the syntax

Actor revised and
captured the error

System retrieves
NL/SfB

classification

System assigns
specifications to

words attached to
SBS

Syntax
correct

System
communicates
findings in GUI

Syntax
incorrect

Revised
requirement

Revision
failed

Use Case Translate

Actors Designer - Engineer - System Engineer

Preconditions Designer - Engineer - System Engineer is lisenced and familiar with the expert system

Description

(standard path)

S1. User open the system

S2. User imports the requirement

S3. User commands 'generate design' to retrieve specifications

S4. System retrieves NL/SfB classification

S6. System assigns specification to words attached to SBS

S7. System communicates findings in GUI

Postcondition (result)
The KBS has enriched the requirement with state of the art knowledge; assigned this information and

data to a discipline; and proposed specific requirements in relation to the discipline as a function of the

initial requirement

Extension -

Exception The requirement its syntax and semantics are in default; the actor can not start its activities

Alternate path

A01: @S2. Actor imports the requirement

 A01.02 Prompt actor(s) empty output screen whenever the syntax is incorrect

 A01.02 Actor checks the syntax of the requirement

 A01.03 RESUME @S02 if analyzed syntax and semantics are revisable

 A01.04 Actor contact the client about the notice of default

Postcondition (result) The client has been sent a notice of default since the requirement has contains syntax errors

Figure 20: Use case 1, Activity diagram: TRANSLATE, Bank of Knowledge.

Table X: Use case 1, Use case text: TRANSLATE, Bank of knowledge.

Figure X: Use case 1, Activity diagram: TRANSLATE, Bank of Knowledge.

Table X: Use case 1, Use case text: TRANSLATE, Bank of knowledge.

Figure X: Use case 2, use case diagram: Database Manager BOK.Table X: Use case 1, Use

case text: TRANSLATE, Bank of knowledge.

Figure X: Use case 1, Activity diagram: TRANSLATE, Bank of Knowledge.

Table X: Use case 1, Use case text: TRANSLATE, Bank of knowledge.

Figure X: Use case 1, Activity diagram: TRANSLATE, Bank of Knowledge.
Table 5: Use case 1, Use case text: TRANSLATE, Bank of knowledge.

Figure X: Use case 2, use case diagram: Database Manager BOK.Table X: Use case 1, Use case text: TRANSLATE,

Bank of knowledge.

Figure X: Use case 2, use case diagram: Database Manager BOK.

Figure X: Use case 2, use case diagram: Database Manager BOK.Table X: Use case 1, Use case text: TRANSLATE,

Bank of knowledge.

Figure X: Use case 2, use case diagram: Database Manager BOK.Table X: Use case 1, Use case text: TRANSLATE,

Bank of knowledge.

88

5.2.2 Use case 2: Database Manager BOK

The second use case of this system is related to the activities that contribute to create, read,
update, and delete Tokens within the system its database. The database, data format, and the
formal language that is implemented to CRUD information and data within the database will be
treated within chapter 6. This second use case, CRUD, is presented in Figure 21 and Figure 22
beneath. This use case diagram communicates the use of the final systems by its user, the Database
Manager(s) of the Bank of Knowledge (KOB), for specific activities that are related to the systems
database management.

Consults Library

Validate syntax of information
and data

Upload a new Library

Read, edit, delete and update a token

Command a database query

Add, define, allocate and specify a new
token

<<include>>

<<include>>

<<include>>

<<include>>

Figure 21: Use case 2, use case diagram: Database Manager BOK.

Figure X: Use case 2, use case diagram: Database Manager BOK.

Figure X: Use case 2, use case diagram: Database Manager BOK.

Figure X: Use case 2, use case diagram: Database Manager BOK.

89

Use Case Database Manager BOK

Actors Database manager (DM)

Preconditions Database manager is lisenced and familiar with the expert system

Description

(standard path)

S1. Database manager opens the system

S2. Database manager checks the syntax

S3. Database manager imports words into the definition file by commanding 'open definition file'*

S4. Database manager defines and enriches word in terms of constraints specification in architecture

and by, if possible, information and graphical representations by use of (valid) links from the World Wide

Web

S5. Database manager verifies and validates the enrichement

S6. Database manager stores and updates the captured knowledge in the CSV file by commanding 'open

definition file'

Postcondition (result) The system its (growing) database is enriched by means of knowledge

Extension -

Exception Actor(s) cannot define nor enrich the word(s) given uncertainties

Alternate path
A01: @S4. Actor uses scientific methodologies and techniques to derive a formal way to enrich the word

 A01.02 enrichment complete Resume @S5

 A01.03 enrichment impossible, actor contacts client

Postcondition (result) Database is upgraded with actual and valid information and data

Database Manager
(DM) starts system

DM checks the syntax

DM imports words into
definition file

DM defines and
enriches words

DM captures
enrichment

DM uses scientific methodologies and
techniques to determine a formal

way to enrich the words

DM contacts client about the notice
of default

DM verifies and
validates the
enrichment

DM captures
knowledge in database

Enrichment
complete

Enrichment
incomplete

Enrichment
complex

Enrichment
easy

Table 6: Use case 2, Use case text: Database Manager BOK

Table X: Use case 2, Use case text: Database Manager BOK

Table X: Use case 2, Use case text: Database Manager BOK

Figure 22: Use case 2, Activity diagram: Database Manager BOK

Table X: Use case 2, Use case text: Database Manager BOK

Figure X: Use case 2, Activity diagram: Database Manager BOK

Table X: Use case 2, Use case text: Database Manager BOK

Table X: Use case 2, Use case text: Database Manager BOK

Figure X: Use case 2, Activity diagram: Database Manager BOK

Table X: Use case 2, Use case text: Database Manager BOK

Figure X: Use case 2, Activity diagram: Database Manager BOK

90

5.3 Prototyping process
Due to the iterative nature of the implemented prototyping methodology and the corresponding
technique to report these process, there has been chosen to summarize the prototypical
developments that have evolved during this development process. This reveals the incremental
growth of the system as a function of client/developer interaction. The phases in which versions of
the prototype, and their corresponding operational functionality, have been designed and
produced are recorded and listed is listed below.

First prototype versions (alpha version)

• The graphical user interface (GUI) consisting of:
◦ an input field where requirements could be formulated as obtained from the client’s

brief;
◦ a command button named as ‘generate design’ where the user can start a enrichment

process of the words as obtained from the requirement;
• The result of these enrichment procedure was outputted in a text file.

Second prototype version (beta version 0.0)

• Here, adjustments have been introduced within the GUI of the system due to client feedback
as a function of UI prototyping:
◦ Three command buttons were added, given:

▪ Open output file, which opens a generated output in a file;
▪ Open definitions file (database), which opens the system its database by means of a

CSV file format to be able to CRUD the captured knowledge and information;
▪ Reload definitions, to reload and update the extended knowledge as captured by

the CRUD principle within the system its database;
• Still, the result of the enrichment procedure was outputted in a text file. However, the data

in this file was then displayed on the output field within the GUI.

Third prototype version (beta version 1.0)

• Significant changes have been introduced in the GUI:
◦ Three output fields have been integrated in the GUI instead of a single output field:

▪ The first one is used for the definition of a word;
▪ The second one is used for the word as defined in types;
▪ The third one is used for the values connected to this word (e.g. a product);

◦ Two command buttons were added and one has been changed:
▪ The open output file command 1, 2 or 3;

• The result of each output was first captured in a text file, and then displayed on their output
fields.

Fourth prototype version (version 1.7.0)

• Slight changes in the GUI interface:
◦ One command button is added:

91

▪ The lexical analysis command button which will execute an automated web based
lexical analysis.

Final version (version 2.0)

• An editor, Database Manager Bank of Knowledge (BOK), for the definition file (database)
was added. This editor contains the following elements:
◦ Four buttons to add html elements to the definitions;
◦ A token panel consisting of the following elements:

▪ An word input field;
▪ A definition panel, containing all (class) definitions and specifications of the word

from the input word field, and a button to add a new (class) definition or
specification to the word;

▪ Five buttons:
• Edit token:

This button sets the word of the token selected in the database to the token in
the input field and the (class) definitions and specifications to the definition
panel.

• Save token:
This button saves the token to the local library. You can now use this token in
the advisor application. Note that this does not permanently saves this token.

• Save changes:
This button saves the local library to a file. Note that this does not save an
unsaved token.

• Del selected def(s) and Delete token:
The Del selected def(s) delete all selected (class) definitions and specifications
in the definition panel. The Delete token deletes simply tokens in the database.

◦ A database panel consisting of the following elements:
▪ A search bar with search button:

Here the user can add its search term to search for the word of a token in the
token selection panel. It uses a simple search algorithm that only compares the
search term with the (first part of the) word of each token. Pressing the search
button or enter will both start a search. To reset, enter nothing and press enter or
search;

▪ A token selection panel containing the tokens from the (local) database. A token
can be selected by clicking on it, but at most one token can be selected at once.
Using the search function can reduce the number of shown tokens.

◦ When the editor is started, it copies the definition file to a backup file. Since the editor
only hides from the user when it is closed, it will only make one backup file per
session. Up to nine different backup files can be stored.

• Some changes in the GUI interface of the advisor:
◦ The reload definitions button was replaced with the Open editor button which opens

the editor; a show/hide button for the word enrichment panel to show/hide this panel.

92

5.4 System operational functionality
The following descriptions, which are summarized for the sake of brevity, ground the operational
functionality and reasoning by system design:

Short description of the operation of the program at startup:

• Create the GUI of the advisor application;
• Read the tokens from the definition (database) file.

Short description of the operation of the program for every command button in the final version
of the program:

• Command button: Generate design
◦ Commands the program to read the text in the input field and stores this;
◦ Splits the text into sentences, and the sentences into words;
◦ Iterate over every single word by checking its definition in the preloaded definition file

(database);
◦ When a word was found in the database, then the program list its definitions in the three

output files;
◦ When finished with parsing all words, then the program reads the three output files and

displays their contents in the three output fields within the GUI.

• Command button: Open output file [1, 2, 3]
◦ Directly opens the output file 1, 2 or 3.

• Command button: Reload definitions (not in final version)

◦ Throws away the previously stored old definitions as captured within the definition file
(database);

◦ The program parses the updated definitions of the definition file (database).

• Command button: Open editor
◦ Opens the token editor.

• Command button: Open definition file

◦ Directly opens the definition file in CSV format which is basically the database within
this system.

• Command button: Lexical analysis
◦ Parses the text in the input field and stores it;
◦ Generates a link to a lexical analyzer that will directly process the text by means of a web

based automated lexical analysis (Noah’s Ark group, 2017);
◦ Opens the link in the default web browser.

93

Declaration on database structure in CSV format:
• Every row within the CSV file defines one word;
• Empty rows and all text (including other cells) after “/:\” are ignored by parsing;
• In the first cell in the row is the word to be defined;
• In the other cells are definitions of that particular word. Every definition is put in a single

cell and contains two properties, given:
◦ NL-SfB class: denotes what type of definition it is. Here, default is “other”, which denotes

the lexical definition of the word. To change the class, simply write “*<NL-SfB class>”
(where “class” is any of the predefined classes) in any cell before the definition. When
using multiple class changes, only the last one before the definition counts;

◦ Specification: denotes whether the cells contain a definition or a value. To change the
specification, simply write “**<specification>” (where specification is either “value” or
“def”). Here, default is “def”. When using multiple specifications changes, only the last
one before the definition counts;

• All definitions within the database can be enriched using HTML. To add, for example, a link
in HTML, write: source , where ‘xyz’ is the link and ‘source’ is the linguistic
description of the link.

Short description of general choices:

• There has been chosen to introduce a separated definition file instead of preprogrammed
definitions since these are then easier to alter from outside the program as a function of
time;

• Generate output files instead of directly putting the data to the output fields to create the
possibility to use the information and data outside the application;

• A hash table is introduced for linking the words with their definition. This decision relies
mainly due to the fact that a hash table has the fasted 'add', ‘remove’ and 'get value'
operations possible;

• Multi-threading is used to parse the definitions to avoid hanging the application. This
means that multiple parts of the program are executed at the same time. However, this
will causes multiple hard-to-trace bugs if not programmed carefully.

Here, a brief introduction has been given on the operational functionality of the program to make
this development process understandable to the layman. The following paragraph will explain the
reasoning by system design in more depth.

94

This page is intentionally left blank

95

6 Results

6.1.1 The Bank of Knowledge application
This section treats the results as obtained from system design as described within chapters 6 and
7 of this report. The operational functionality of the Bank of Knowledge will be treated within this
section. The aim of this chapter is to provide an overview of how this research initiative have
resulted to the development of the program. There has been chosen to report the results of this
tool chronologically, since this matches the procedure for both use cases of this system the best.

6.1.2 The Graphical User Interface
The main emphasis of program development relied on the fact that this program needs to be easy
by use of the layman. This implies that the user interface and the accommodated functionality of
this program is required to be user friendly, and therefore easy to understand by untrained people.
The main aim of this part of system design reflects in a graphical user interface where all
functionalities are directly accessible by the users. The main functionality of this tool are described
in section 5.4 and are demonstrated in section 7. The illustration beneath represents the Graphical
User Interface of the Bank of Knowledge where the mean functionality of the system is
accommodated. This is done as a preparation for further descriptions on system results within this
chapter. Its aim is to provide practical insight in the configuration and operational functionality of
the tool. This resulted in the following configuration:

 Figure 23: The graphical user interface of the Bank of Knowledge system (Use case 1).

Figure X: The graphical user interface of the Bank of Knowledge system (Use case 1).

Figure X: The graphical user interface of the Bank of Knowledge system (Use case 1).

Sentence

Sentence

Sentence

Sentence

Word 1

Word 2

Word 3

Word 4

Figure X: The
graphical user
interface of the
Bank of
Knowledge
system (Use case
1).Word 1

Word 2

Word 3

Word 4

Definition 1

Definition 2

Definition 3

Definition 4

Definition 1

Definition 2

Definition 3

Definition 4

Definition 1

Definition 2

Definition 3

Definition 4

Definition 1

Definition 2

Definition 3

Definition 4

Specification 1

Specification 2

Specification 3

Specification 4

Specification 1

Specification 2

Specification 3

Specification 4

Specification 1

Specification 2

Specification 3

Specification 4

Specification 1

Specification 2

Specification 3

Specification 4

Figure

X:

Tokeniz

ation of

word,

definiti

on(s),

class(es

) and

specific

ation(s)

.

96

6.1.3 Lexical analysis
The fact is that requirements as obtained from the client’s brief reflect in mutual contractual
obligations. According to the UAC-IC 2005, the client is responsible for presenting and
communicating these client specific requirements in a clear and unambiguous way. On the other
hand, the designer has its obligation for the duty to warn. This, not only to regulate business
processes, but also to safeguard the relation between a designer and client as a function of business
processes. This is very crucial given, since the designer is responsible to communicate defaults in
the specification of requirements towards the client. Designers and engineers are known to be
specialized in designing and engineering rather than linguistics. Therefore, it might be very
important to be able to decide, in an effective and efficient way, whether a requirement is
ambiguous. This current determination procedure on whether a requirement is ambiguous or not
is currently done fully manually, which is very time consuming and error prone due to the possible
misinterpretations of the reader. Therefore, there has been decided to integrate an automated
web based Lexical Analyzer which dissects the sentences by means of a Syntactic Dependency parse
and a Frame-Semantic Parse (Noah’s Ark group, 2017). This is way more effective and efficient in
comparison to the traditional laborious client requirement interpretation procedures. By this
technique, words can be characterized by their function within a certain sentence. Then,
observations due to the first layer of ambiguity can be addressed.

6.1.4 Word enrichment
Requirements are known to be written in chunks of text that contain linguistic definitions and
properties. Interpreting and translating a single word, or a relatively small sentence seems to be
more effective if executed manually. However, in the construction industry, client’s brief can
possibly contain thousands of requirements. These linguistic descriptions are known to be
described by a client’s preferences, rather than standards in terms of syntax and semantics (CROW,
2017). This can possibly instigate a layer of ambiguity during information exchanges. It is very
important to demarcate the interpretation of words in a sentence, in order to demarcate the
interpretation of a whole sentence. Therefore, there has been chosen to translate the variety of
words as obtained from certain client specific requirements into enriched words where the
designers and engineers can start working (safely) with. This procedure is also very crucial since
here, the origin of the interpretation and definition(s) of the words and sentences will be captured.
The knowledge or information that can be attached to a certain word are very flexible from nature.
This flexibility rises from the possibility that an interpreter (D&E) can determine the definition of
the word. There has been chosen to capture the definitions by means of state of the art knowledge
that is offered by literature. Nowadays, most literature is digitalized or easy accessible by means of
the World Wide Web.

Therefore there has been decided to introduce the use of knowledge and information as obtained
from the World Wide Web. The classification of which type of knowledge or information that there
can be attached to a certain word is very flexible in nature. However, this research initiative holds
on a certain formal format that is integrated in the current data format of the database, which will
be treated in more depth within paragraph 6.1.7. The D&E are more than free to reason their

97

interpretation by means of the state of the art knowledge as obtained from the World Wide Web.
The fundamental preconditions by the classification of the definitions for interpretation by the D&E
can be categorized as follows:

1) The precondition is that the sentence, that consists of words, has been analyzed by the
automated lexical analysis plugin;

2) The word needs to be defined by means of state of the art knowledge as obtained from
valid literature as gained traditionally, or from valid literature as obtained from the World
Wide Web;

3) The obtained definition of the word needs to be characterized, classified and captured by
means of its source. Here the flexibility comes in play, since the D&E are more than free to
attach definitions of words under the fundamental condition that it can be reasoned by
valid state of the art knowledge and or semantics;

4) The obtained definition of the word needs to be allocated according to a certain formal
system that relates sub systems as a function of a system. This makes it possible to allocate
requirements on an object level;

5) All of the previous steps need to be monitored and logged carefully within the definition
file of this tool which is the database that will grow as a function of time.

6.1.5 Word allocation
The previous paragraph 6.1.4 has been used to introduce how the words that are enriched as
obtained from the sentences can be captured. These sentences are the client specific requirements
as obtained from the client’s brief. This technique can be used to enrich both the interpretation
and definition domain of a requirement. This procedure is from great importance by the
interpretation of the correct meaning of requirements as captured during the briefing stage. Yet,
another very important aspect successive to this procedure is the allocation of client specific
requirements on an object level within a system. Here, the link between requirements and objects
will be realized. However, it is a tough job to do this, because words can possibly vary in their
definition. This simply by the fact that a word can have different meanings within different
domains. It is important to determine and justify for what purpose the word has been used. This
process is very crucial by decision making based on decision documents that are written natural
language. For example, the definition of the word ‘warm’ can have a different definition domain in
terms of ‘architectural amenity’ than the design of a ‘heating system’. The definition of the word
‘warm’ could instigate ambiguity between designing parties, this especially for the allocation of
requirements (that are built from words) to objects on a subsystem level. The following principle is
introduced within the functionality of the program to safeguard and regulate this procedure:

1) The interpreted words are defined and enriched with their possible meaning;
2) The requirements are analyzed according to their application on an object level;
3) The analysis on the application of a sentence on an object level have been related to

subsystems, according to a formal system distribution (NL-SfB in this case) where this word
is most likely to apply to;

98

4) Based on the findings of step 3, the words are defined in terms of their meaning regarding
to the acting discipline and the object within the SBS that is affected by its application;

5) The definition of the word is captured in a sense that declares ambiguity among acting
parties, based on the methods and techniques as treated within 6.1.7, regarding a certain
application of a sentence on an object level.

6.1.6 Requirement specification
Whenever a requirement is interpreted, enriched, and allocated on an object level, then the
possibility of specifying a requirement arises. This implies that specifications can be formulated
from the pre-treated requirements. This makes it possible to translate the actual application of a
certain requirement on an object level in terms of the final design decision; the product
specification. This is a crucial process during the translation procedure of client specific
requirements into product specification, especially in case of non-functional requirements. During
this activity, it is known to be essential to derive all mono-disciplinary requirements that a non-
functional requirement can contain for a certain disciplinary application on an object level. This
could possibly contribute to formalization of a certain specification. Yet, non-functional
requirements are known to possibly contain multiple interfaces that are integrated within a single
requirement. It can be very hard to distill mono-disciplinary requirements. Here, the definition of
a mono-disciplinary requirement is assumed to be a requirement where one acting party is
responsible for (e.g. an architectural, or structural, or heating requirement). The harmonized fusion
of a set of mono-disciplinary requirements are assumed to contribute to the holistic configuration
of a complex non-functional requirements.

Problems during the translation of the physical and functional requirements are not that error
prone as by the translation of the non-functional requirements. These are often non-quantifiable,
and more qualitative from nature. They are not that tangible and measurable as required for
instant translation into product specification during early design stages. To be more specific, value
(numerical) requirements and relational requirements are easier to interpret and specify than
textual requirements. This implies that textual requirements need a certain treatment before they
can be specified. This is basically the essence of the operational functionality that the program will
offer as a function of time. The system is able to store the reasoning during the dissection
procedure of a requirement into a product specification which can be consulted for future
translation procedures in upcoming projects.

The previous steps as described within this chapter, that are proposed for dissection,
interpretation, enrichment, and allocation of a requirement contribute to the possibility to specify
a qualitative- textual requirement. The treatment of a qualitative- textual requirement is such that
it needs to be dissected from its interfaces with other objects within a system. For instance, if a
requirement implies “that a room needs to withhold a cozy atmosphere”, then there needs to be
questioned and reasoned how this affects the interfaces between objects on a system level. More
specific, what measures need to be taken in terms of architectural, structural, MEP design? And

99

how can these mono-disciplinary requirements be distilled from this qualitative- textual
requirement?

The methodology that is accommodated within functionality of this program provides the
opportunity to determine the meaning and application domain of a certain qualitative- textual
requirement before merging them. This will be discussed in chapter 6.1.7. This provides the
opportunity to harmonize interfaces that the requirement can imply; before capturing its holistic
meaning. This dissection process aims for measurability according to the structural composition of
a requirement which provides the possibility to determine the specification of a non-functional
requirements.

6.1.7 Database and input
This paragraph functions as a practical description on the operational functionality of the database
and the structure input. Here, the decomposition of tokens into words, definitions, NL-SfB classes
and specifications will be treated. There will also be explained what formal rules there apply to
create, read, update and revise (CRUD) words in the database withouth the use of the ‘Database
Manager KOB’. This implies how that database is functioning and interacting with the program,
with the actual code. This process happens under the hat. How the ‘Database Manager KOB’ can
be accessed and used by its users is treated within this chapter.

The program reads words from the database as structured by tokens. These tokens are built from
words, definitions, classes, and specifications. From here on, we assume that a word in its enriched
state is referred to as a token. Within the database, we can tokenize words by enriching them. This
enrichment process captures dependencies between words and the system. The enrichment
process provides the words as obtained from the requirements with knowledge and information.
This structure provides the users to tokenize a certain word according to a certain enrichment
principle. Figure 24 summarizes the structure of a token and its possibility to be enriched within
the systems database by means of definitions, classes, and specifications.

Definition(s) NL-SfB class(es) Specification(s)Word

TOKEN

The Tokenization of words functions as the fundamental data structure of the content within the
database. The ‘Database Manager BOK’ is introduced within the system to accommodate all formal
notations in a representative and concise way. The graphical user interface of the ‘Database
Manager BOK’ is designed as follows:

Figure 24: Tokenization of word, definition(s), class(es) and

specification(s).

Figure X: The graphical user interface of the ‘Database Manager BOK’

(Use case 2).Figure X: Tokenization of word, definition(s), class(es) and

specification(s).

Figure X: The graphical user interface of the ‘Database Manager BOK’

(Use case 2).

Figure X: The variety of definition domains for word(s) enrichment.

Figure X: The graphical user interface of the ‘Database Manager BOK’

(Use case 2).Figure X: Tokenization of word, definition(s), class(es) and

100

Figure 25: The graphical user interface of the ‘Database Manager BOK’ (Use case 2).

Figure X: The variety of definition domains for word(s) enrichment.

Figure X: The graphical user interface of the ‘Database Manager BOK’ (Use case 2).

Figure X: The variety of definition domains for word(s) enrichment.

Figure X: The variety of predefined classes as a function of the SBS.Figure X: The variety

of definition domains for word(s) enrichment.

Figure X: The graphical user interface of the ‘Database Manager BOK’ (Use case 2).

Figure X: The variety of definition domains for word(s) enrichment.

Figure X: The graphical user interface of the ‘Database Manager BOK’ (Use case 2).

101

Words are basically the origin where knowledge and information will be attached to. This process
starts by defining the words. Here, there is assumed that a word can possibly contain a fundamental
linguistic definition, and definitions in terms of domain language. Here, domain language will be
expressed by means of legal, geometrical, structural, building physical, material technical, financial,
and aesthetic definition(s) (Niemeijer, 2011). These definitions that define the word(s) can be
structured as follows:

Geometrical

Definition(s)

Structural Building physical
Material
technical

Financial AestheticLegalLinguistic

Whenever words are defined, its allocation towards a system class needs to be assigned. Here,
there is assumed to plug in the NL-SfB system to classify the System Breakdown Structure by means
of a formal way. The essence of this process is to link a word where it applies to on a subsystem
level. This helps in the following process to specify a definition of that particular word in relation
to its allocation. This will be demonstrated within section 7. The words can be classified and
allocated by means of the following structure:

30 – SECONDARY
ELEMENTS, OPENINGS

NL-SfB class(es)

40 - FINISHING
50 – SERVICES MAINLY

MECHANICAL

60 – SERVICES MAINLY
ELECTRICAL

80 - FITINGS

20 – STRUCTURE
PRIMARY ELEMENTS,

SKELETON

10-GROUND
SUBSTRUCTURE

90 - TERRAIN 120 – DEMOLITION70 - FACILITIES

The token that consists of words, as defined and allocated as a function of a class in relation with
the system, can then be specified. This specification procedures is based on numerical and non-
numerical attributes that describe a certain specification.

Specification(s)

Numerical
attributes

Non-numerical
attributes

Figure 26: The variety of definition domains for word(s) enrichment.

Figure X: The variety of predefined classes as a function of the SBS.Figure X: The variety

of definition domains for word(s) enrichment.

Figure X: The variety of predefined classes as a function of the SBS.

Figure X: The structure of a specification.Figure X: The variety of predefined classes as a

function of the SBS.Figure X: The variety of definition domains for word(s) enrichment.

Figure X: The variety of predefined classes as a function of the SBS.Figure X: The variety

of definition domains for word(s) enrichment.

Figure 27: The variety of predefined classes as a function of the SBS.

Figure X: The structure of a specification.Figure X: The variety of predefined classes as a

function of the SBS.

Figure X: The structure of a specification.

Figure X: Fundamental structure of an enriched token.Figure X: The structure of a

specification.Figure X: The variety of predefined classes as a function of the SBS.

Figure X: The structure of a specification.Figure X: The variety of predefined classes as a

function of the SBS.

Figure 28: The structure of a

specification.

Figure X: Fundamental

structure of an enriched

token.Figure X: The structure

of a specification.

102

From here on, the structure of an enriched token after the enrichment procedures within the
database can be expressed by the following (fundamental) example:

Definition(s) NL-SfB class(es) Specification(s)Word(s)

Building physical
50 – SERVICES MAINLY

MECHANICAL
(x)°C – (x)°C

warm Aesthetics

Building physical

40 - FINISHING

60 – SERVICES MAINLY
ELECTRICAL

RGB(x;y;z)

(x)lm – (x)lm

Enriched TOKEN

Definition(s) NL-SfB class(es) Specification(s)

Initial TOKEN

Word(s)

The database is structured in a CSV file and consists basically of cells that relate by means of rows
and columns. Here, every row within the CSV file defines a token. This will be elaborated upon the
following sections. The data structure within the CVS file can fundamentally be illustrated by means
of figure 30.

Word(s) A Definition(s) NL-SfB class(es) Specification(s)

Column A Column X Column X1 Column X3

Row X

Figure 30 defines the formal language in which information and data needs to be captured within
the system its database. To allocate a word to a specific class within the SBS, the user commands
“*<type>”, where <type> is one of the predefined classes from the SBS. Default is ‘other’ in this
case, which is used to define the words its initial lexical definition. To specify a specification to an
allocated word, the user needs to command “**<specification>”. This leads to the following
representation:

Word(s) A Definition(s) *<class> **<specification>

Column A Column X Column X1 Column X3

Row X

Figure 29: Fundamental structure of an enriched token.

Figure X: Data structure within the database.Figure X:

Fundamental structure of an enriched token.

Figure X: Data structure within the database.

Figure X: Formal representation of a token within the

database.Figure X: Data structure within the database.Figure X:

Fundamental structure of an enriched token.

Figure X: Data structure within the database.Figure X:

Fundamental structure of an enriched token.

Figure 30: Data structure within the database.

Figure X: Formal representation of a token within the

database.Figure X: Data structure within the database.

Figure X: Formal representation of a token within the database.

Figure X: Formal representation of a token enriched with HTML

web links.Figure X: Formal representation of a token within the

database.Figure X: Data structure within the database.

Figure X: Formal representation of a token within the

database.Figure X: Data structure within the database.

Figure 31: Formal representation of a token within the database.

Figure X: Formal representation of a token enriched with HTML web

links.Figure X: Formal representation of a token within the database.

Figure X: Formal representation of a token enriched with HTML web

103

The system is basically programmed to find the word in the first column, column A. Each cell that
is positioned in the row of the word, row 1 in this case, will be assumed to be a definition cell. In
other words, all cells after cell A1 will be assumed to be definitions of the word(s). This assumption
stops until the program parses “*<type>”. This prompts the program to parse the input within the
successive cells as a class that will be related to the SBS. All cells after “*<type>”, D1 for example,
will be assumed to be a definition of the type as stated in cell C1. This process stops until the
program reads in on “**<specification>”. Here, the program will be prompted to read a certain
specification at the position of cell E1. All cells after cell E1, F1 for example, will then be assumed
to be an additional definition on E1

The words within the tokens can also be enriched not by HTML links instead of textual descriptions
on their definitions. The user can simply combine a textual description with a HTML by using the
following: source , where ‘xyz’ is the link and ‘source’ is the linguistic description
of the link. Figure 32 represents this format where a words, classes, and specifications can be
enriched with a HTML link.

 source Word(s) source *<class> **<specification>

Column X3Column A Column X Column X2 Column X4

Row X source

Column X5

Figure 32: Formal representation of a token enriched with HTML web links.

Figure X: Input of a mono-disciplinary requirement within the ‘requirement input field’ Figure X: Formal

representation of a token enriched with HTML web links.

Figure X: Input of a mono-disciplinary requirement within the ‘requirement input field’

Figure X: The enriched representation of the obtained words within the ‘word enrichment’ field. Figure

X: Input of a mono-disciplinary requirement within the ‘requirement input field’ Figure X: Formal

representation of a token enriched with HTML web links.

Figure X: Input of a mono-disciplinary requirement within the ‘requirement input field’ Figure X: Formal

representation of a token enriched with HTML web links.

104

This page is intentionally left blank

105

7 Procedures for system use

7.1 Procedure for the translation of a mono-disciplinary requirement, Use case 1:

TRANSLATE.

Within this paragraph, the operational functionality by use of the BOK system for the translation

of a simple, monodisciplinary requirement will be demonstrated. This procedure is reported as a

function of the early design process. The exact process of the use case of the tool is described and

captured within section 5.2.1.

This paragraph demonstrates and concludes that the user(s) of the ‘Bank of Knowledge’ system are

only required to fill in a certain ‘mono disciplinary client requirement’ within the input field, and to

press the generate button in order to receive a product specification. The practical process will be

demonstrated according to the following steps:

1) The mono-disciplinary requirement as obtained from the client’s brief, “The type of smoke
detector is Siemens FD0221 or equivalent”, needs to be extracted and imported in the input field;

Figure 33: Input of a mono-disciplinary requirement within the ‘requirement input field’

Figure X: The enriched representation of the obtained words within the ‘word enrichment’ field. Figure

X: Input of a mono-disciplinary requirement within the ‘requirement input field’

Figure X: The enriched representation of the obtained words within the ‘word enrichment’ field.

Figure X: The enriched representation of the obtained words within the ‘word enrichment’ field. Figure

106

2) Whenever the syntax of the requirement is defined in terms of its linguistic composition, then
the words as previously enriched in previous projects can be observed as follows:

This panel can be consulted by the user whenever the fundamental definitions of the words, as
obtained from the requirements, are needed for certain purposes. This panel can be simply be
covered by pressing the ‘hide’ command. This shall be the case for the next steps, here the ‘Word
enrichment’ panel shall be covered.

The relevant words as determined by the database developers according to the principle as stated
within 5.2.1, have been enriched by valid knowledge. The characteristics of the enrichment can be
read by the description as stated in blue behind the word. The user can assume that these
characteristics are referring to the links that were consulted for knowledge or information during
the enrichment procedure of the word in previous projects. These are captured within the
definition file which is the database. The database can be reached by pressing ‘open definition file’,
this button is integrated to make the Database Manager BOK assessable from this application. This
will be discussed later on in this report.

Figure 34: The enriched representation of the obtained words within the ‘word enrichment’ field.

Figure X: The enriched representation of the obtained words within the ‘word enrichment’ field.

Figure X: The enriched representation of the obtained words within the ‘word enrichment’ field.

Figure X: The enriched representation of the obtained words within the ‘word enrichment’ field.

107

Figure 35: The definition of the word ‘smoke detector’, within the ‘word

enrichment field’, is defined by means of a Web Based thesaurus (Art &

Architecture Thesaurus, 2017). This knowledge is captured within the

system its database.

Figure X: The definition of the word ‘equivalent’, within the ‘word

enrichment field’, is defined by means of a Web Based thesaurus

(Visuwords WordNet, Princeton 2017). This knowledge is captured within

the system its database.Figure X: The definition of the word ‘smoke

detector’, within the ‘word enrichment field’, is defined by means of a Web

Based thesaurus (Art & Architecture Thesaurus, 2017). This knowledge is

captured within the system its database.

Figure X: The definition of the word ‘equivalent’, within the ‘word

enrichment field’, is defined by means of a Web Based thesaurus

(Visuwords WordNet, Princeton 2017). This knowledge is captured within

the system its database.

Figure X: The allocation of the word ‘Siemens fd0221’ and ‘equivalent’ on a

subsystem level within the SBS according to the NL-SfB as presented within

the ‘word to object allocation’ field. Here, both ‘Siemens fd0221’ and

‘equivalent’ are allocated to the NL-SfB class no. 60. The specification of the

‘Siemens fd0221’ is expressed by the HTML link named as ‘initial product

specification’, and ‘equivalent’ is expressed in specifications as obtained

from ‘Vendor A’ – ‘Vendor B’ – and ‘Vendor C’ that deliver product with the

same specification or better.Figure X: The definition of the word

Figure 36: The definition of the word ‘equivalent’, within the ‘word enrichment

field’, is defined by means of a Web Based thesaurus (Visuwords WordNet,

Princeton 2017). This knowledge is captured within the system its database.

Figure X: The allocation of the word ‘Siemens fd0221’ and ‘equivalent’ on a

subsystem level within the SBS according to the NL-SfB as presented within the

‘word to object allocation’ field. Here, both ‘Siemens fd0221’ and ‘equivalent’ are

allocated to the NL-SfB class no. 60. The specification of the ‘Siemens fd0221’ is

108

3) Within this step, the allocation of certain words in relation to an object on a subsystem level can

be observed. This means that this word, as obtained from the requirement, has been allocated to

this specific part of the system according to a certain system classification principle (NL-SfB in this

case).

Figure 37: The allocation of the word ‘Siemens fd0221’ and ‘equivalent’ on a subsystem level within the SBS

according to the NL-SfB as presented within the ‘word to object allocation’ field. Here, both ‘Siemens fd0221’ and

‘equivalent’ are allocated to the NL-SfB class no. 60. The specification of the ‘Siemens fd0221’ is expressed by the

HTML link named as ‘initial product specification’, and ‘equivalent’ is expressed in specifications as obtained from

‘Vendor A’ – ‘Vendor B’ – and ‘Vendor C’ that deliver product with the same specification or better.

Figure X: The allocation of the word ‘Siemens fd0221’ and ‘equivalent’ on a subsystem level within the SBS according

to the NL-SfB as presented within the ‘word to object allocation’ field. Here, both ‘Siemens fd0221’ and ‘equivalent’

are allocated to the NL-SfB class no. 60. The specification of the ‘Siemens fd0221’ is expressed by the HTML link

named as ‘initial product specification’, and ‘equivalent’ is expressed in specifications as obtained from ‘Vendor A’ –

‘Vendor B’ – and ‘Vendor C’ that deliver product with the same specification or better.

Figure X: The allocation of the word ‘Siemens fd0221’ and ‘equivalent’ on a subsystem level within the SBS according

to the NL-SfB as presented within the ‘word to object allocation’ field. Here, both ‘Siemens fd0221’ and ‘equivalent’

are allocated to the NL-SfB class no. 60. The specification of the ‘Siemens fd0221’ is expressed by the HTML link

named as ‘initial product specification’, and ‘equivalent’ is expressed in specifications as obtained from ‘Vendor A’ –

‘Vendor B’ – and ‘Vendor C’ that deliver product with the same specification or better.

Figure X: The allocation of the word ‘Siemens fd0221’ and ‘equivalent’ on a subsystem level within the SBS according

to the NL-SfB as presented within the ‘word to object allocation’ field. Here, both ‘Siemens fd0221’ and ‘equivalent’

are allocated to the NL-SfB class no. 60. The specification of the ‘Siemens fd0221’ is expressed by the HTML link

named as ‘initial product specification’, and ‘equivalent’ is expressed in specifications as obtained from ‘Vendor A’ –

‘Vendor B’ – and ‘Vendor C’ that deliver product with the same specification or better.

109

4) Within this requirement, the design solution is stated within the sentence itself. Therefore, the
specification is simply obtained by consulting the manufacturer’s site for the exact, valid, product
specifications. These specifications communicate the performances of the object; the smoke
detector. These product specification are allocated and specified within the ‘word to object
allocation specification’ column at the right hand side.

Figure 38: The valid product specification that communicate the product performance’s as obtained from the

vendor’s website which are provided within the ‘word to object allocation specification’ column as a web link (figure

37).

Figure X: Input of a non-functional, somehow fuzzy, requirement within the ‘requirement input field’.

Figure X: The valid product specification that communicate the product performance’s as obtained from the vendor’s

website which are provided within the ‘word to object allocation specification’ column as a web link (figure X).

Figure X: Input of a non-functional, somehow fuzzy, requirement within the ‘requirement input field’.

Figure X: Input of a non-functional, somehow fuzzy, requirement within the ‘requirement input field’.

Figure X: The valid product specification that communicate the product performance’s as obtained from the vendor’s

website which are provided within the ‘word to object allocation specification’ column as a web link (figure X).

110

7.2 Procedure for the translation of a non-functional requirement, Use case 1:

TRANSLATE.

Within this paragraph, the operational functionality by use of the Bank of Knowledge for the
translation of a somehow fuzzy, non-functional requirement will be demonstrated. The exact
process of the use case of the tool is described and captured within section 5.2.2. Here, the practical
process will be demonstrated according to the following steps:

1) The non-functional requirement as obtained from the client’s brief, “The reception desk is the
first point of contact for a visitor with the EEE. The reception desk has to be representative of the
EEE quality and identity. Applicable key word are: representative, inviting, warm and friendly”,
needs to be extracted and imported in the input field;

Figure 39: Input of a non-functional, somehow fuzzy, requirement within the ‘requirement input field’.

Figure X: Input of a non-functional, somehow fuzzy, requirement within the ‘requirement input field’.

Figure X: Input of a non-functional, somehow fuzzy, requirement within the ‘requirement input field’.

Figure X: Input of a non-functional, somehow fuzzy, requirement within the ‘requirement input field’.

111

2) Whenever the requirement is positioned in the input field, the automated ‘Lexical analysis’ can
be executed. The program will guide its user automatically to the web based automated lexical
analysis tool as developed by the Noah’s Ark group (2017).

3) Whenever the syntax of the requirement is defined in terms of linguistic composition, then
relation between words from the sentence and the words that are stored within the systems
database can be observed as follow:

The most important words within the requirement, as determined by the database developers,

have been enriched by ‘valid state of the art’ knowledge. For the sake of brevity, there has been

chosen to treat the enrichment, translation, allocation and specification path of the keyword

‘warm’ as a function of system design. In reality, each of the single words as stated within the input

panel can be followed by the same path. The characteristics of the enrichment can be observed by

the description that it contains behind the initial word as stated in blue. The user can assume that

these characteristics are referring to the links that were consulted for knowledge or information

during the enrichment procedure of the word in previous projects. These can now be consulted to

perceive a better understanding of the sentence and its meaning.

Figure 40: The enriched representation of the obtained words within the ‘word enrichment’ field.

Figure X: The enriched representation of the obtained words within the ‘word enrichment’ field.

Figure X: The enriched representation of the obtained words within the ‘word enrichment’ field.

Figure X: The enriched representation of the obtained words within the ‘word enrichment’ field.

F

i

g

u

r

e

X

:

T

h

e

e

F

i

g

u

r

e

X

:

T

h

e

e

n

r

i

c

h

e

d

r

e

p

r

e

s

e

n

t

a

t

i

o

n

o

112

4) Within this step, the allocation of the words where the requirement is built from will be related
to objects on a subsystem level. More specific, words with an ambiguous nature within the context
of the requirement have been assigned to objects within the SBS.

Here, for instance, warm has been assigned in terms of ‘architectural finishes’. This could also link
the word to an acting discipline. This link implies measures in term architectural specifications.
Warm is also defined in terms of disciplines that contribute to the design of ‘heating’ or ‘electrical’
subsystems. The configuration of a space, where this requirement is referring to, is demarcated by
those particular objects that define the performance of this space. This implies that the words need
to be defined in terms of this demarcation in regards to disciplinary measures.

The accumulation of these mono-disciplinary measures, as derived from the words within the initial
context of the non-functional requirements, form the configuration of the requirement. These
mono-disciplinary requirements can be allocated to specific parts of the space. In this example, a
mono-disciplinary requirement has been derived in terms of the predefined definitions such as
‘Aesthetics’ and ‘Building physics’ which will be treated within the next step.

Figure 41: The allocation of the word ‘warm’ as obtained from the non-functional requirement on a subsystem level.

In this example, ‘warm’ has been automatically allocated to ‘40-Finishing’, 50-Services mainly mechanical, and 60-

services mainly electrical within the SBS within the ‘NL-SfB classification’ field.

Figure X: The allocation of the word ‘warm’ as obtained from the non-functional requirement on a subsystem level.

In this example, ‘warm’ has been automatically allocated to ‘40-Finishing’, 50-Services mainly mechanical, and 60-

services mainly electrical within the SBS within the ‘NL-SfB classification’ field.

Figure X: The allocation of the word ‘warm’ as obtained from the non-functional requirement on a subsystem level.

In this example, ‘warm’ has been automatically allocated to ‘40-Finishing’, 50-Services mainly mechanical, and 60-

services mainly electrical within the SBS within the ‘NL-SfB classification’ field.

113

5) Within this requirement, the design solution is not stated within the sentence itself. Therefore,
the specification are simply obtained by automatically consulting the systems database for valid
product specifications. These specifications communicate the performances of the word warm in
relation to the parts of the system that is has been assigned to. These product specification are
allocated and specified within the ‘word to object allocation specification’ column at the right hand
side.

These mono-disciplinary requirements are distilled from the initial non-functional requirement as

stated within the ‘requirement input field’ at the beginning of this paragraph. This process took a

somehow fuzzy requirement to an unambiguous description that could be specified in terms of

engineering information.

By this demonstration we can conclude that the definition of the applicable keyword ‘warm’ is

translated into required ‘product specifications’ according to the methodology as obtained from

this research that is accommodated within the ‘Bank of Knowledge’ systems operational

functionality.

Figure 42: The valid product specification that communicate the product performance’s obtained systems database

which are provided within the ‘word to object allocation specification’.

Figure X: The descriptions of the operational functionality that are accommodated within the graphical user interface

of the ‘Database Manager BOK’ (Use case 2).Figure X: The valid product specification that communicate the product

performance’s obtained systems database which are provided within the ‘word to object allocation specification’

(figure X).

Figure X: The descriptions of the operational functionality that are accommodated within the graphical user interface

of the ‘Database Manager BOK’ (Use case 2).

Figure X: The fundamental ‘linguistic definition’ of the token ‘cold’.Figure X: The descriptions of the operational

functionality that are accommodated within the graphical user interface of the ‘Database Manager BOK’ (Use case

2).Figure X: The valid product specification that communicate the product performance’s obtained systems database

which are provided within the ‘word to object allocation specification’ (figure X).

Figure X: The descriptions of the operational functionality that are accommodated within the graphical user interface

of the ‘Database Manager BOK’ (Use case 2).Figure X: The valid product specification that communicate the product

performance’s obtained systems database which are provided within the ‘word to object allocation specification’

(figure X).

114

7.3 Procedure for database management, Use case 2: Database Management.

This chapter treats the second Use case of the system in which the CRUD principle will be discussed.
This principle accommodated within the ‘Database Manager BOK’ which is designed and
programmed to create, read, update and delete the system its database off concepts. In this
database, all tokens are stored according to the principle as described within section 6.1.7. This
database manager is designed with the use of layman in mind, and is therefore very user friendly.
Within this paragraph there will be introduced how this part of the system can be consulted for
database related activities. The first part of this paragraph consists of a brief introduction on the
GUI of the ‘Database Manager BOK’. This is illustrated within fig 43. beneath:

Figure 43: The descriptions of the operational functionality that are accommodated within the graphical user

interface of the ‘Database Manager BOK’ (Use case 2).

Figure X: The fundamental ‘linguistic definition’ of the token ‘cold’.Figure X: The descriptions of the operational

functionality that are accommodated within the graphical user interface of the ‘Database Manager BOK’ (Use case

2).

Figure X: The fundamental ‘linguistic definition’ of the token ‘cold’.

Figure X: The allocation of the ‘token’ on a system level by means of a ‘NL-SfB class’ and its ‘NL-SfB class

115

1) The first step is to basically add a new token that will be captured within the system its database.

Please note that the token within this example is basically ‘imaginary’ and introduced as a

demonstration tool rather than a valid outcome. The system its database is structured according

to the data format as presented within section 6.1.7. This implies that the database manager will

prompt its user with descriptions on the composition of the token in terms of word(s), definitions,

class(es), and specification(s). Within this step, we are simply going to configure the token ‘cold’.

This is done by means of the following procedure.

1.1) The token ‘cold’ has been defined as a word within the ‘input word’ field. The word ‘cold’ has
been ‘defined’ by means of a ‘linguistic’ definition that is described as a ‘certain temperature which
is < 19C °

1.2) In this situation, the token ‘cold’ has been assigned as a word ‘cold’ that is defined in terms of
its linguistic definition. In de upcoming steps will demonstrate how a definition can be assigned to
a certain word.

Figure 44: The fundamental ‘linguistic definition’ of the token ‘cold’.

Figure X: The allocation of the ‘token’ on a system level by means of a ‘NL-SfB class’

and its ‘NL-SfB class definition’Figure X: The fundamental ‘linguistic definition’ of

the token ‘cold’.

https://www.thefreedictionary.com/%C2%B0C

116

2) The second step within this procedure is to assign a ‘NL-SfB class’ to a token. This classification

can also be enriched with a certain specific ‘NL-SfB class definition’. In other words, the definition

of ‘cold’ can differ from its initial definition whenever considering a class that this word applies to,

this could declare ambiguity. This will be discussed later on within this chapter.

2.1) Adding a definition can simply be obtained by pressing the ‘add definition’ button. The word

‘cold’ has been assigned to the NL-SfB class ’50-Services Mainly Mechanical’ by means of a specific

‘NL-SfB class definition’ that is described as ‘a certain cooling system’.

2.2) In this situation, the token has been assigned and defined to a specific NL-SfB class which

allocates a token on an object level within the SBS. The definition of ‘cold’ has been translated to

what ‘cold’ can mean in terms of the NL-SfB class ’50-Services Mainly Mechanical.

Figure 45: The allocation of the ‘token’ on a system level by means of a ‘NL-SfB class’ and its ‘NL-SfB class definition’

Figure X: The allocation of the ‘token’, with the word ‘cold, on a system level by means of a second ‘NL-SfB class’

and its ‘NL-SfB class definition’ do declare ambiguity regarding the definition and interpretation of the word

‘cold’.Figure X: The allocation of the ‘token’ on a system level by means of a ‘NL-SfB class’ and its ‘NL-SfB class

definition’

Figure X: The allocation of the ‘token’, with the word ‘cold, on a system level by means of a second ‘NL-SfB class’

and its ‘NL-SfB class definition’ do declare ambiguity regarding the definition and interpretation of the word ‘cold’.

117

3) The token ‘cold’ could also be defined, allocated and assigned to the same NL-SfB class; but with

another application domain. Here, cold could have been defined as the amenity that users can have

by entering a ‘cold’ room. Cold could both be defined in terms of ‘Linguistics’ ‘Aesthetics’ or

‘Building Physics’ and so on. This is mostly the case for ambiguous requirements which will be

demonstrated later in this chapter.

Figure 46: The allocation of the ‘token’, with the word ‘cold, on a system level by means of a second ‘NL-SfB class’

and its ‘NL-SfB class definition’ do declare ambiguity regarding the definition and interpretation of the word ‘cold’.

Figure X: The ‘specification’ of the token in terms of ‘product performances’.Figure X: The allocation of the ‘token’,

with the word ‘cold, on a system level by means of a second ‘NL-SfB class’ and its ‘NL-SfB class definition’ do declare

ambiguity regarding the definition and interpretation of the word ‘cold’.

Figure X: The ‘specification’ of the token in terms of ‘product performances’.

Figure X: The translation of the token ‘cold’ in product specifications by means of the BOK system.Figure X: The

‘specification’ of the token in terms of ‘product performances’.Figure X: The allocation of the ‘token’, with the word

‘cold, on a system level by means of a second ‘NL-SfB class’ and its ‘NL-SfB class definition’ do declare ambiguity

regarding the definition and interpretation of the word ‘cold’.

Figure X: The ‘specification’ of the token in terms of ‘product performances’.Figure X: The allocation of the ‘token’,

118

4) Given the ‘word’ its ‘definitions’ and its allocation on a object level, there can be specified and

constraint how this token needs to perform. Capturing a certain product specification within the

system its database is what aimed for in this step. As mentioned within step 1, the content of this

token is far away from valid and is simply introduced as a tool for demonstration. In this step, the

specific domain related definitions will be specified and constraint in (imaginary) product

specifications.

Figure 47: The ‘specification’ of the token in terms of ‘product performances’.

Figure X: The translation of the token ‘cold’ in product specifications by means of the BOK system.Figure X: The

‘specification’ of the token in terms of ‘product performances’.

Figure X: The translation of the token ‘cold’ in product specifications by means of the BOK system.

Figure X: The findings of the ‘google search engine’ after entering the search keys ‘warm room colors’.Figure X: The

translation of the token ‘cold’ in product specifications by means of the BOK system.Figure X: The ‘specification’ of

the token in terms of ‘product performances’.

Figure X: The translation of the token ‘cold’ in product specifications by means of the BOK system.Figure X: The

‘specification’ of the token in terms of ‘product performances’.

119

5) After the formalization of the ‘token’, the Bank of Knowledge will review this concept whenever

it is commanded to translate this word. This results as follows within the BOK GUI:

6) In this step, the example of ‘the translation of a ‘non-functional requirement’ will be treated.

Here, the definition of the word ‘warm’ within the initial requirement can instigate ambiguity by

interpretation and translation.

Having a requirement that is mono-disciplinary from nature, a requirement that can be assigned
and allocated to one party and part of the SBS, is desired by the developers of the database. This
makes in relatively simple to define, allocate and assign a certain specification to a certain
requirement. In cases of ambiguous words, or word combinations within a sentence, we need to
derive and formulate a specification by means of a valid methodology or technique since this is
unknown. This procedure is known to enrich the database with new concepts that are stored as
tokens. These findings will translate the definitions of the words, in relation to its class, to technical
specifications where valid design decisions can rely upon. Here, the following qualitative and
quantitative methods and techniques can be introduced to derive (valid) specifications for 42.11
binnenwandafwerkingen; afwerklagen (example paragraph 6.2):

Figure 48: The translation of the token ‘cold’ in product specifications by means of the BOK system.

Figure X: The findings of the ‘google search engine’ after entering the search keys ‘warm room colors’.Figure X: The

translation of the token ‘cold’ in product specifications by means of the BOK system.

Figure X: The findings of the ‘google search engine’ after entering the search keys ‘warm room colors’.

Figure X: Fragment of the findings of the google search on the keyword ‘Banana’, very small sample size. Here, we

will not find apples or peaches within its findings.

Figure X: The findings of the ‘google search engine’ after entering the search keys ‘warm room colors’.Figure X: The

translation of the token ‘cold’ in product specifications by means of the BOK system.

Figure X: The findings of the ‘google search engine’ after entering the search keys ‘warm room colors’.Figure X: The

translation of the token ‘cold’ in product specifications by means of the BOK system.

120

- Literature;
- Reference projects;
- Questionnaires;
- Data analysis;

For the practice, and sake of brevity, we assume a (yet) practical data analysis to gain insight in the
bandwidth of colours that the 42.11 binnenwandafwerkingen; afwerklagen should contain. For this
case, the google.com search engine can be consulted to derive the colours that satisfy the finishing
colours of the space in regards to the initial requirement. Here, we shall search on the following
keywords: warm room colours given the fact that we have found a clear definition of the word
warm, within the enrichment stage, in terms of architectural colour states.

But how valid are the searches from google where our data set will be gained from? How valid is
the database that can be delivered. Let’s test what the engine finds after searching on the keywords
‘banana’ and ‘rectangular’.

Figure 49: The findings of the ‘google search engine’ after entering the search keys ‘warm room colors’.

Figure X: Fragment of the findings of the google search on the keyword ‘Banana’, very small sample size.

Here, we will not find apples or peaches within its findings.

Figure X: The findings of the ‘google search engine’ after entering the search keys ‘warm room colors’.

Figure X: Fragment of the findings of the google search on the keyword ‘Banana’, very small sample size.

Here, we will not find apples or peaches within its findings.

Figure X: Fragment of the findings of the google search on the keyword ‘Rectangular’, very small sample

size. Here, we will not find circles or triangles within the findings.Figure X: Fragment of the findings of the

google search on the keyword ‘Banana’, very small sample size. Here, we will not find apples or peaches

within its findings.

Figure X: The findings of the ‘google search engine’ after entering the search keys ‘warm room colors’.

Figure X: Fragment of the findings of the google search on the keyword ‘Banana’, very small sample size.

Here, we will not find apples or peaches within its findings.

121

Of course, this is no scientific approach. But this, yet very simple, technique could provide the
possible ranges of colours that can be used by the determination of valid colour ranges that satisfy
the requirement in terms of finishing colours. Whenever determined, then these colour ranges can
be defined as a specification; a bandwidth in which design decisions can be taken in terms of
architectural finishing colours. If a larger amount of pictures will be analysed, then we could derive
statutes within the data that we can formulate as knowledge.

Figure 50: Fragment of the findings of the google search on the keyword ‘Banana’, very small sample size. Here, we

will not find apples or peaches within its findings.

Figure X: Fragment of the findings of the google search on the keyword ‘Rectangular’, very small sample size. Here,

we will not find circles or triangles within the findings.Figure X: Fragment of the findings of the google search on the

keyword ‘Banana’, very small sample size. Here, we will not find apples or peaches within its findings.

Figure X: Fragment of the findings of the google search on the keyword ‘Rectangular’, very small sample size. Here,

we will not find circles or triangles within the findings.

Figure X: The findings of the ‘google search engine’ after entering the search keys ‘warm room colors’.Figure X:

Fragment of the findings of the google search on the keyword ‘Rectangular’, very small sample size. Here, we will

not find circles or triangles within the findings.Figure X: Fragment of the findings of the google search on the

keyword ‘Banana’, very small sample size. Here, we will not find apples or peaches within its findings.

Figure X: Fragment of the findings of the google search on the keyword ‘Rectangular’, very small sample size. Here,

we will not find circles or triangles within the findings.Figure X: Fragment of the findings of the google search on the

keyword ‘Banana’, very small sample size. Here, we will not find apples or peaches within its findings.

Figure 51: Fragment of the findings of the google search on the keyword ‘Rectangular’, very small sample size. Here,

we will not find circles or triangles within the findings.

Figure X: The findings of the ‘google search engine’ after entering the search keys ‘warm room colors’.Figure X:

Fragment of the findings of the google search on the keyword ‘Rectangular’, very small sample size. Here, we will

not find circles or triangles within the findings.

Figure X: The findings of the ‘google search engine’ after entering the search keys ‘warm room colors’.

Figure X: Photo sample as obtained from the google search on ‘warm room colors’.Figure X: The findings of the

‘google search engine’ after entering the search keys ‘warm room colors’.Figure X: Fragment of the findings of the

google search on the keyword ‘Rectangular’, very small sample size. Here, we will not find circles or triangles within

the findings.

122

Figure 52: The findings of the ‘google search engine’ after entering the search keys ‘warm room colors’.

Figure X: Photo sample as obtained from the google search on ‘warm room colors’.Figure X: The findings of the

‘google search engine’ after entering the search keys ‘warm room colors’.

Figure X: Photo sample as obtained from the google search on ‘warm room colors’.

Figure X: Extracting a color sample of the obtained picture to capture knowledge on colors that have been defined

by individuals on the globe as ‘warm room colors’.Figure X: Photo sample as obtained from the google search on

‘warm room colors’.Figure X: The findings of the ‘google search engine’ after entering the search keys ‘warm room

colors’.

Figure X: Photo sample as obtained from the google search on ‘warm room colors’.Figure X: The findings of the

‘google search engine’ after entering the search keys ‘warm room colors’.

Figure 53: Photo sample as obtained from the google search on ‘warm room colors’.

Figure X: Extracting a color sample of the obtained picture to capture knowledge on colors that have

been defined by individuals on the globe as ‘warm room colors’.Figure X: Photo sample as obtained

from the google search on ‘warm room colors’.

Figure X: Extracting a color sample of the obtained picture to capture knowledge on colors that have

been defined by individuals on the globe as ‘warm room colors’.

Figure X: The color sample that defines ‘warm room colors’ in terms of TIH and RGB specifications.

These specifications can be converted to any kind of color scales that product manufacturers use;

such as the RAL scale.Figure X: Extracting a color sample of the obtained picture to capture

knowledge on colors that have been defined by individuals on the globe as ‘warm room

colors’.Figure X: Photo sample as obtained from the google search on ‘warm room colors’.

123

Figure 54: Extracting a color sample of the obtained picture to capture knowledge on colors that have been defined

by individuals on the globe as ‘warm room colors’.

Figure X: The color sample that defines ‘warm room colors’ in terms of TIH and RGB specifications. These

specifications can be converted to any kind of color scales that product manufacturers use; such as the RAL

scale.Figure X: Extracting a color sample of the obtained picture to capture knowledge on colors that have been

defined by individuals on the globe as ‘warm room colors’.

Figure X: The color sample that defines ‘warm room colors’ in terms of TIH and RGB specifications. These

specifications can be converted to any kind of color scales that product manufacturers use; such as the RAL scale.

Figure X: The final representation of the mono-disciplinary requirement, the specification, is stated within the ‘word

to object allocation specification’ screen.Figure X: The color sample that defines ‘warm room colors’ in terms of TIH

and RGB specifications. These specifications can be converted to any kind of color scales that product manufacturers

use; such as the RAL scale.Figure X: Extracting a color sample of the obtained picture to capture knowledge on colors

that have been defined by individuals on the globe as ‘warm room colors’.

Figure X: The color sample that defines ‘warm room colors’ in terms of TIH and RGB specifications. These

specifications can be converted to any kind of color scales that product manufacturers use; such as the RAL

scale.Figure X: Extracting a color sample of the obtained picture to capture knowledge on colors that have been

defined by individuals on the globe as ‘warm room colors’.

Figure 55: The color sample that defines ‘warm

room colors’ in terms of TIH and RGB

specifications. These specifications can be

converted to any kind of color scales that

product manufacturers use; such as the RAL

scale.

Figure X: The final representation of the mono-

disciplinary requirement, the specification, is

stated within the ‘word to object allocation

specification’ screen.Figure X: The color sample

that defines ‘warm room colors’ in terms of TIH

and RGB specifications. These specifications can

124

We observe the outcome of the monster(s) by taking their TIH or RGB specification. Then, these

can be translated formats such as, for instance, RAL specifications where vendors might specify

their products with. Imagine how specific this could get if a large amount of pictures would be

analyzed; it could be a valid given as stored within the KOB its database. This is basically what the

system aims for: valid expert advice which grows as a function of time.

By this relatively simple and practical technique we could store knowledge that contains colors as

a function of a certain lexical definitions. Then, from here on, this knowledge and information can

be consulted each time within the tool by these type of specific queries for new projects.

This mono-disciplinary requirement is distilled from the initial non-functional requirement as

stated within the ‘requirement input field’. This process took a somehow fuzzy description to a

more unambiguous description that could be specified. Here, the definition of the applicable

keywords such as ‘representative, inviting, warm and friendly’ are translated into specifications

according to this methodology as presented and accommodated within the tool its operational

functionality. This mono-disciplinary requirement is distilled from the initial non-functional

requirement as stated within the ‘requirement input field’. This process took a somehow fuzzy

description to a more unambiguous description that could be specified.

Figure 56: The final representation of the mono-disciplinary requirement, the specification, is stated within the ‘word

to object allocation specification’ screen.

Figure X: The final representation of the mono-disciplinary requirement, the specification, is stated within the ‘word

to object allocation specification’ screen.

Figure X: The final representation of the mono-disciplinary requirement, the specification, is stated within the ‘word

to object allocation specification’ screen.

Figure X: The final representation of the mono-disciplinary requirement, the specification, is stated within the ‘word

to object allocation specification’ screen.

125

By this demonstration, the definition of the applicable keyword ‘warm’ is translated into

specifications according to the methodology as obtained from this research that is accommodated

within the Bank of Knowledge its operational functionality.

126

This page is intentionally left blank

127

8 Conclusion

This chapter treats the conclusions for research question 1 to 6 and recaps by answering the main
research question. These conclusions are made according to the findings from the review of
literature, the interviews during the in-house practices, and the development process and form the
conclusions of this research.

1) What client specification procedures are there in use within the design process, and how does

Systems Engineering support these procedures?

The client specification procedures of the design phase and the systems engineering process have

been identified by means of a literature review and the in-house practices. There is found that

ambiguous requirements, as stated in the client’s brief, evolve to unambiguous requirements as a

function of the design process. This is the case assuming an iterative design process where there is

a possibility to start dialogues with the client on the interpretation of requirements. Then, these

requirements will evolve from ambiguous to unambiguous as a function of the design process

assuming that they will be fine-tuned parallel to this iterative process. Capturing the correct

interpretation and understanding of the client needs is mainly done iteratively during the design

stage. The understanding of the set of requirements and the need of the client in an early phase is

very crucial. This due to the fact that the decisions as taken in the early stages of the project are

often the most crucial decisions as the impact of revisions later on in the project will have significant

impacts on both finance and time management.

There is observed that the translation of client requirements are heavily relying on organizational

experiences from the past. That is mainly the core where design decisions are relying upon. Yet,

there is found that a lot of these organizational experiences from the past due to client and

designer interaction, translation procedures, verification procedures an decision making are never

captured and stored by means of a certain ontology, standard and semantic. Therefore, reusing

this knowledge is almost impossible, it’s just not there. Pragmatic knowledge as gathered by

experiences of designers and engineers will be used in the heat of the moment to assess whether

solutions may satisfy the client’s requirements. Currently, at this point, a lot of human

interpretations will come in to play which can easily cause errors due to misinterpretation. A

significant improvement of implementation of systems engineering can be found in a more

standardized way of working.

2) What variety of client requirement types are known within the design process, and which of

these carry risk in terms of non-conformity?

There is researched upon how requirements are structured fundamentally. This provided the

opportunity to identify what types of client requirements there currently exist within the AEC

domain. There is found that requirements can be defined in two ways, either by their fundamental

128

linguistic structure or their classification towards prioritized needs. The structural composition of

a certain requirement defines the initial step for methods to define requirements. The structure of

a requirement can be captured with quantifiable, relational and qualitative descriptions. These

define the initial structure of a certain requirement and where they are applying to. This structure

can be expressed by a certain value, a relation or a qualitative description. These indicators reflect

the level in which a requirement is measurable or the level of ambiguity that a requirement

contains. These levels imply the complexity of translating a requirement into product

specifications.

Requirements are also found to relate to a certain need. This implies that client needs can be

expressed in terms of client specific requirements. This process, to absorb a certain need within a

certain requirement, states the second step for methods to define proper requirements. The

interpretation of the requirements obtained from the requirement analysis requires client

validation. This validation procedure with the client is crucial to ensure that right interpretation is

captured. This approval on ‘design task’ declares uncertainty for both the designer as client.

Professionals within the Architecture, Engineering and Construction industry are often found to

work according to traditional organizational ethics rather than by knowledge. This possibly implies

the unconformity about a formal language among the parties, in which the system gets

communicated captured.

The phenomenon of non-conformity regarding client requirements boil basically down to the

structure of fundamental requirements. Both structure and composition of a requirement can

affect human interpretation. Many misinterpretations of requirements are often occurring during

early design stages. There are various layers in which ambiguity can occur. These can occur by

writing, reading, and communicating requirements. There can be stated that requirements which

have the biggest impact are the requirements which have the highest priority towards the client’s

needs. This also implies the level of risk that a requirement can contain.

3) What is the current practice in the AEC industry for translating client specific requirements

into product specification, and how do verification procedures safeguard these?

The current practice in client requirements verification and validation, as often implemented by

field experts on a more practical level, is visualized by a schematic representation as captured

within chapter 4. The core steps of both the translation and verification procedure are captured

within activity diagrams. There must be mentioned that the shift due to ‘modern work ethics’

within the AEC-domain due to integrated contracts require more than the processual knowledge

an average verification manager. This relates more to the domain of Design Management which

increased in complexity due to deformations within the construction industry. The verification

procedures take place after a phase in the project is finished. This is a pragmatic process where the

quality is heavily relying upon the interpretation of the verification manager. The systems

engineering approach has heavily improved this procedure relative to the unstructured traditional

129

methods. However, there is found that verification managers are required to have a decent

understanding of the Domain Specific Language in which systems are configured, captured and

communicated. The SE approach contributed by means of its methodical approach.

4) What can automation, for translating client requirements into product specifications,

contribute to the design process?

Automation by translating client requirements can be very beneficial. Especially for coping with a

demand specification which specifies a complex project where both the designing parties as

contractor are unfamiliar with. In these cases, when budgeted, extended requirement analysis can

be introduced for implementation. This basically means that the standard requirement analysis

process will be extended by means of time. However, the main findings why extended requirement

analysis are not introduced that often can be explained by the following reason, given: the AEC

sector is used to start designing right away and adjusts its design during the iterative design

process. This causes the insufficient time that there is taken to correctly interpret the need of the

client. Another reason can be explained by the fact that the investment costs of extended

requirement analysis are earned back after a tender is won. In reality, not every tender is won

which makes this an unprofitable strategy to introduce this means for each project.

Then one can state that it is very useful to have specialists reviewing the necessity of such extended

requirement analysis since this can be very profitable for contracting complex projects, especially

by collaborating with specific clients. However, even these specialists are not capturing their

decisions by means of standards and semantics. If they would, then this could prevent a lot of

rework by each project. This due to the fact that reasoning by decision making is captured by means

of standardization that can be reused. This was also found as one of the main preconditions of

automating the translation procedures.

The few time that there is budgeted for requirement analysis implies the need for a certain

(automated) information system that can be consulted within the early design stages to consult for

specific queries. These type of systems could provide knowledge on what decisions have been

taken by the translation of certain requirements from previous projects. This can be very beneficial

for saving budget for decision making during the early design stages. There are numerous buildings

in the world; yet a slight of their design decisions captured which is a pity.

5) What are the current techniques within the AEC-domain, by means of automation, to translate

product requirements into product specifications?

Currently, as discovered by the literature review and the in-house practice, there are no such

information systems in which requirements can be fed to obtain product specifications. The

domains of data and text mining are coping with the conversions of chunks of data and text into

informative representations, but these are not implemented within the specific domain of AEC to

130

obtain this research initiative its objectives. Industries where data and natural language is

functioning as the core of business are known to use a variety of data- text mining, natural language

processing, and speech detection techniques to stimulate certain business processes. However,

there are no information systems in use within the AEC domain, as found by this research, that can

convert natural language to product specification. There are various relational databases and

electric requirement models that can store requirements according to semantics to stimulate

interoperability. However, these are stored without a unified formal language or semantics. The

only standards that are mainly captured within these databases are organizational from nature.

This makes interoperability difficult given the fact that ambiguousness can occur by collaborating

with both clients and external parties.

The CBNL is currently contributing to formalize a formal language in which concepts that are in use

within the AEC are defined and stored unambiguously. This could be used within the future

development of such systems, yet the CBNL is still developing. There must be stated that the lack

of such information systems is not due to the technology, as reviewed within the topics of the

literature review, but rather to the missing formal language and semantics that are required to

capture and process such information to knowledge. Thereby, numerous buildings have been

manufactured for mankind, yet, no standards are applied for storing specific information regarding

design decisions which can be used for the implementation of knowledge based systems. This is

very useful information given the fact that design decisions as made in the past, could be used to

predict the outcome of design decisions made for the future.

6) Is it possible to develop a method that translates and stores physical, functional, and non-

functional requirements into product specifications by means of automation?

Rule checking is currently used for validation of quantifiable requirements in building information
models. Numerous researchers have contributed to the development of automated rule checking
techniques. This is currently the bleeding edge technology within the domain of Building
Information Management. However, this research has found that the initial translation procedure,
from requirement to product specification by means of automation, is not researched upon within
the AEC. The interviewees emphasized that it seems a complex task to translated physical and
functional requirements by means of automation, given the fact that information on design
decisions from the past have never been captured by means of standards and semantics. There is
no knowledge captured in a formal way that can be used to feed such systems. There is a lack of
lawfulness for knowledge capturing within the AEC-domain. The decisions from the past are not
usable given these circumstances. This makes it even more challenging to initiate attempts to
automate this process for the case of non-functional requirements. The interviewees mentioned
that it is very difficult to automate the translation procedure of non-quantifiable, more qualitative
requirements given the previous reasoning. Non-quantifiable and qualitative requirements are
known to have different meanings for different human beings. The interpretations might strongly
vary among a random human population. There are no standards in what qualitative requirements

131

can be compared to. This could be done whenever knowledge as gained from previous projects is
captured in an adequate way. A client could be very satisfied if a designer could show him what he
designed according to a certain non-quantifiable requirement. This might improve the client /
designer interaction.

Among the interviewees, having a system that could prompt users with experiences from the past,
by the dissection of non-functional requirements, is assumed to be very useful as a support tool by
decision-making during the early design stage. Experts assume that this could significantly improve
the process of client / designer interaction, and previous to a tender. A pre-condition, that is from
great importance for using information by the design of such automated system, is that it should
be able to use input information of verified and validated projects from the past. Having such
information could determine a certain range in which design decisions are most likely to be
configured in, given the results from the past. Section 5.1 treated the evolutionary prototyping
process that is initiated for the development of such a prototypical system in which the following
operational qualities (system requirements) are accommodated:

1) The fundamental operational functions such as Create, Read, Update and Delete (CRUD),
need to be accommodated in the system;

2) The system needs to be capable to run automated lexical analysis to dissect the linguistic
chunks of text, in which product requirements are listed, within a client’s brief;

3) The system needs to be able to store enrich words, as obtained from the dissected text, by
means of state of the art knowledge to formulate the possible meaning(s) of the word
within a sentence;

4) The systems needs to be able to allocate the enriched words in relation to the subsystems
by means of a standard system distributions, such as the NL/SfB;

5) The system needs to capture and distinguish the translation of the definitions of obtained
words in relation to other acting disciplines, assuming that these definitions can vary;

6) The system needs to capture the final specification of the word(s) to formulate a product
specification that satisfies the initial requirement.

This functionality is concluded to be from great importance by the development of a more
advanced system in which the operational functionality is accommodated.

Main research question: “How can the translation process of non-functional requirements be

structured and automated to formulate product specifications in the design process?”

The review of literature has treated both the current curve of knowledge and recent practices in
regards to the design process, Systems Engineering, Knowledge Management and Natural
Language Constraints in the AEC-industry. The in-house practices revealed, by means of a relatively
small sample size, the current practices in regards to the translation of the variety of requirements.
The outcome of the observations as merged from both the literature review and the in-house
practices contributed to the answer to the main research question.

132

Requirements manifest their self in different structures and properties. The difference among the
types of requirements implicate the level of difficulty for the translation of requirements into
product specifications. Science has brought a variety of client requirement specification
methodologies as a function of a certain design process. These methodologies and techniques are
often adopted from other domains such as Computer Science, Aerospace- Mechanical- Electrical
engineering. The tradition of Requirement Management and Engineering contributed to the
methodical way in which requirements can be structured before translating them into product
specifications. There can be stated that there is a wide range of possible options that treat the
translation of client specific requirements as a function of a certain design process. These
methodologies and techniques often dictate formal notations of requirements which is crucial.
These formal notations employ the formal language in which requirements are treated and
communicated within a certain domain which is very crucial given the fact that it can declare the
level of ambiguity between all interpreters within a certain process. This is of great importance for
the translation of non-functional requirements which are often not quantifiable and therefore
more qualitative from nature.

The AEC-industry is adopting these methods and techniques as mentioned. The AEC-domain has
also a strong tradition in how client specific requirements can be treated as a function of a design
process. Literature provides a variety of methods and techniques in how client specific
requirements can be treated within the AEC-industry. However, there are still no formal languages
in which the requirements are written and specified. This makes it very hard for interpreters to
harmonize the perception of natural language before converting this in raw engineering data. This
process is known to be error prone. In this research there has been found that the requirements
obtained from clients need to be filtered on what each of the words, combinations of words or
combinations of sentences within a chunk of text implies in terms of engineering. This is very hard
assuming that there is no conformity between actors within the AEC-domain on what specific
concepts should imply.

In this research, there has been chosen to filter words from a sentence by means of tokenization.
These tokens basically imply the data structure that a certain word contains. The tokenization of
words is used to develop a fundamental formal notation that could be used for processing this
Domain Specific Language for computers as an experiment. These tokens are structured by means
of a word, definition, class, and a specification. The words can be defined using natural languages
such as Dutch, English or Chinese and so on. The definition of words are structured and defined in
terms of domain language and shall be expressed by legal, geometrical, structural, building
physical, material technical, financial, and aesthetical definition(s). The allocation of these specific
definitions of words is related by means of a formal system classification technique, the NL-SfB,
that allocates the relation between word, definition, classification, and specification on a system
level. This implies that the NL-SfB is also relating the product specifications on a system level. These
product specifications are the results that reflect on raw engineering data that implies specific
constraints. However, there must be mentioned that it can be a very laborious task to convert
qualitative information into quantitative information. Section 7.2 within this research revealed how
this could be achieved for a single case. Here, the word ‘warm’ has been demonstrated to be

133

converted by means of data analysis in a quantitative RGB color range. Achieving a product
specification from a fuzzy text was the initial objective of this research which has been proven by
this experiment.

Along this research, there has been found that there are a variety of techniques that can
accommodate the introduced methodology within a piece of software. In the development process
of this research initiative, the technique that has been used to extract words from a certain
sentence written in natural language are hash tables. Without any further due to the characteristics
of this technique, there must be mentioned that several ways to Rome could have been chosen.
Hash tables have been chosen due to the sake of brevity for evolutionary prototyping and its close
practical relation to text mining. Natural Language Processing, and derivatives of this technique,
would have been state of the art, but requires a very intense development process. The current
technique used proved that automation can be introduced for the translation of non-functional
requirements into product specifications. The effectiveness and efficiency of both introduced
methods and techniques will be treated within the upcoming chapter on Recommendations.

134

This page is intentionally left blank

135

9 Recommendations
This chapter introduces the recommendations that are resulting from this research initiative. The
section is divided into a set of recommendations for implementation, and recommendations for
future research and development.

9.1 Recommendations for implementation

The first recommendation for the AEC-industry in relation to this research initiative and objective
is to start introducing formal languages in which client specific requirements are required to be
specified. For example, the Dutch construction industry is currently not using an agreed formal
notation that dictates the composition of a client specific requirement. Clients are known to be
responsible for descriptive clearance of their demand. However, interpreters might miss or even
over do on crucial information. This contributes to the errors that can occur by the interpretation
of a requirement by a random interpreter. This process leaves room for additional assumption that
one may have for the interpretation of sentences, words, and combinations of both. The variety of
these interpretations may lead to misinterpretation of the essence which can lead to ambiguity
during business processes. The fact is that these processes occur at the front end of the whole
system design process, and that revisions due to the meaning of a requirement might flow in
catastrophic unintended events that are hard to revise or even irrevocable. These problems are
known to reflect in significant additional costs and delays.

The second recommendation can be given in relation to the first recommendation. If requirements
are structured by means of a formal language, then interpretations directly relate to only this
notation. This does not imply that ambiguity is not occurring within formal languages, but that the
factors that contribute to misinterpretations and ambiguity can be heavily reduced. It is very
important that both client and designer understand the design challenges in a harmonized sense
given the problem that could occur from this process if not executed correctly. Both clients and
designers should ideally use the same formal language in which concepts are expressed by means
of natural language prior the verification and validation of requirements.

The third recommendation can be described by the simple fact that client and designer interaction
needs to be captured as a function of time by means of formal notations. This could contribute in
an efficient and effective way in which information and data can be processed as knowledge. Then,
this knowledge can be assumed to be valid if verification and validation has been proven. If
knowledge from the past is relying on valid sources, then this can be used to serve mankind. This
implies that this knowledge can be captured for use in certain databases which can be consulted
for specific queries in future business scenarios. This principle could also contribute to the
development of a certain open source database in which client requirements are stored by means
of formal notations. It would be very effective and efficient if such open source database would be
accessible by both clients and designers since this might reduce the iterative nature of design
processes within the AEC-domain. This might reduce delays within the design process given the
agreement in thoughts that both parties can have within the early design stages. This is especially

136

advantageous in competitive environments during the early design stages for tenders where few
or little information is available to designers and engineers.

Furthermore, if open source databases are not achievable, then companies are recommended to
start developing and maintaining such principles in an internal database since this can provide them
managerial edges along the early design process. Capturing knowledge in relation to requirement
translation procedures from the past can provide great insight for predictions of system
configuration and behavior for future projects. One can state that companies within the AEC-
industry are not that familiar with Building Information Management and Information Technology.
Then, outsourcing this type of demands or initiating startups as a company holding in regards to
this objective can be an obvious options. Design Management is known to be of great importance
giving the rise in complexity in demands within the AEC business.

9.2 Recommendations for future research & development
This research initiative towards the translation of ambiguous client requirements into product
specifications has showed process improvements and the application of automation by translation
of client specific requirements into product specifications. The following summation expresses this
research’s main findings;

- Improvement of the iterative nature within early design processes;
- Allocation and dissection of the translation processes as a function of the design and

business process within the AEC-domain;
- Current threshold and practice in verification, validation, and electronic requirement

management;
- Preconditions for automation of the translation of client specific requirements into product

specifications;
- Techniques to translate qualitative information into quantitative information obtained

from non-functional requirements;
- Framework to filter and structure information and data from client specific requirements

into product specifications;
- Implementation of a structured format that could contribute to the structure of future

databases in which knowledge due to client specific requirements can be captured;
- Prototype for automated translation of client specific requirements into product

specifications;

The preconditions for a system that automates the requirement translation into product
specifications has been found. The AEC-industry is known to have executed several trials and
demonstrations in which attempts have been initiated to automate this procedure. There has been
tried to interpret client specific requirements by means of semi-automated techniques in order to
enrich this information in terms of Systems Engineering information and data to support the SE
process. There has been found that these attempts were unsuccessful given the following reasons:

137

- Specific knowledge on lexical analysis, requirement ontologies, standards and semantics
are missing within the AEC-industry;

- Manufacturers that take design and design management for their account due to
contractual obligations are used to build after design, rather than design and build which
results in a lack in functional design competences;

- There is no international or national standard in which concepts are captured, there is no
formal language in which requirements can be defined and interpreted by both human and
computers;

- Information and data due to client specific requirements and specifications are not
delivered, nor captured by means of standard structures.

This research has found that requirement translations into product specifications could be
automated if the following input can be provided to feed computer based systems:

- Validated interpretations of requirement with clients and users as obtained from previous
projects;

- Availability of a set of dissected requirements, as programmed in previous projects, that are
represented in a measurable state;

- Allocation of requirements and objects, as done in previous projects;
- Availability of the total amount of information in regards to the verification procedure, as

executed within previous projects.

The eventual way of designing a more advanced and intelligent automated translation system is
found along this research initiative. This, especially with the findings during the evolutionary
prototyping process. These fundamental system requirements for such advanced systems are
summarized as follows:

- Fundamental operational functions such as Create, Read, Update and Delete (CRUD), need
to be accommodated within such systems;

- Such systems need to be capable to run automated lexical analysis to dissect the linguistic
chunks of text obtained from a client’s brief;

- Such systems need to be able to automatically store enriched words by means of a formal
notation, as obtained from the dissected text, by means of standardized concepts to
formulate the possible meaning(s) of the word within a sentence;

- Such systems need to be able to automatically equate and allocate the enriched words in
relation to the subsystems by means of a standard system distributions;

- Such systems need to automatically capture and distinguish the translation of the
definitions of the obtained words in relation to other acting disciplines, assuming that these
definitions can vary;

- Such systems need to automatically capture the final specification of the word(s) to
formulate a product specification that satisfies the initial requirement;

- Such systems need to run on databases that are filled with valid and state of the art
knowledge obtained from a variety of projects as delivered in the past.

138

This page is intentionally left blank

139

10 References

15288, I. (2015). ISO/IEC/IEEE 15288:2015 Systems and software engineering - system life cycle processes.

Abeljaber, R. I. (2017, June 1). Knowledge management of corporate intranets. Opgehaald van

http://web.mit.edu/ecom/www/Project98/G4/

Alavi, M. &. (2001). Knowledge management and knowledge management systems: Conceptual foundations and

research issues. MIS quarterly, 25, 107-136.

Alharbi, M., & Emmit, S. (2015). Transferring architectural management into practice: A taxonomy framework.

Frontiers of Architectural research.

Argote, L. &. (2000). Knowledge Transfer: A Basis for Competitive Advantage in Firms. Organizational Behavior and

Human Decision Processes, 82, 150-169.

BAMinfra. (2008, May 13). SE-wijzer: Handleiding Systems Engineering. Opgehaald van

http://www.leidraadse.nl/assets/files/images/BN/bestanden/BAM_SE-wijzer.pdf

Banko, M. &. (2001). Scaling to very very large corpora for natural language disambiguation. ACL ‘01 Proceedings of

the 39th Annual Meeting on Association for Computational Linguistics.

Barney, B. (2017, June 29). Introduction to Parallel Computing. Opgehaald van from:

https://computing.llnl.gov/tutorials/parallel_comp/

Belblidia, S. &. (2003). Implicit handling of geometric relations in an existing modeler. CAADRIA 2003 Conference, (pp.

613-622). Bangkok, Thailand.

Bernheim, B., & Whinston, M. (1998). Incomplete contracts and strategic ambiguity. 902-932.

Bilal, M. O. (2016). Big Data in the construction industry: A review of present status, opportunities, and future trends.

Advanced Engineering Informatics, 30 (2016), 500-521.

BIMForum. (2017, June 5). Level of specification. Opgehaald van www.bimforum.org/lod

BNA. (2017, July 09). NL/Sfb-Tabellen inclusief gereviseerde Elementenmethode '91. Opgehaald van

http://www.stabu.org/wp-content/uploads/2015/07/NL-SfB_BNA_Boek_2005-10-90-807626-3-6.pdf

BNA, N. &. (2017, 05 05). Standaard bestekbeschrijving DNR-STB 2009. Opgehaald van

http://www.bna.nl/fileadmin/user_upload/Helpdesk/bureauzaken/standaardtaakbeschrijving_2009-def.pdf

Brown, P., Cocke, J., Pietra, S., Pietra, V., Jelinek, F., Lafferty, J., & Mercer, R. &. (1990). A statistical approach to

machine translation. Computational Linguistics 16, 79-85.

Brunton, J., Hellards, R., & Boobyer, H. (1964). Management Applied to Architectural Practice. George Godwin.

BuildingSmart. (2011). National institute of Building Sciences. BuildingSMART alliance.

BuildingSmart. (2013). NEN-ISO 16739:2013.

Campbell, D. (2017, August 8). Modeling Rules, Architecture week. Opgehaald van

http://www.architectureweek.com/2006/1011/tools_1-1.html

140

CB-NL. (2017, May 07). Concepten Bibliotheek Nederland. Opgehaald van CB-NL: http://public.cbnl.org/over-cb-nl

Chao-Duivis, M., Koning, M., & Ubink, A. (2013). A practical guide to Dutch building contracts (3rd edition). The

Hague: IBR.

Chen, L., & Luo, H. (2013). A BIM-based construction quality management model and its applications. Automation in

construction 46, 64-73.

Chen, M. M. (2014). Big data: A survey. . Mobile Networks and Applications, 19, 171-209.

College, U. d. (2001). Systems Engineering fundamentals. MIT.

Crow. (2005). Model Basis Overeenkomst, UAV-GC 2005. Ede: Crow.

Dave, B. &. (2009). Collaborative knowledge management - A construction case study. Automation in construction,

18, 894-902.

Davis, M. (1985). Computability and Unsolvability. Dover Publications.

Deshpande, A. A. (2014). A framework for a BIM-based knowledge management system. Procedia Engineering, 85,

113-122.

Dimyadi, J., & Amor, R. (2013). Automated Building code Compliance Checking - Where is it at? Proceedings of CIB

WBC 2013, 172 - 185.

Dittrich, J. &.-R. (2012). Efficient big data processing in Hadoop MapReduce. . Proceedings of the VLDB Endowment,

5.

Dohmen, M. (1998). Constraint-Based Feature Validation, PhD thesis. Delft: Delft University of Technology.

Donath, D. &. (2007). Constraint-Based Design in Participatory Housing Planning. eCAADe 2007 Conference, Frankfurt

am Main, Germany ‘Predicting the Future’,, (pp. 687-694).

Eadie, R., Browne, M., Odeyinka, H., Mckeown, C., & Mcniff, S. (2013). Automation in construction implementation

troughout the UK construction project lifecycle: An analysis. Automation in Construction 36, 145-151.

Eastman, C. M. (2011). BIM handbook: A guide to building information modeling for owners, managers, designers,

engineers and contractors. John Wiley & Sons. .

Eggink, D., & Gross, M. &. (2001). Smart Objects: Constraints and Behaviors in a 3D Design Environment. eCAADe

2001 Conference, Helsinki, Finland ‘Architectural Information Management, (pp. 460-465).

El. Reifi, M. H. (2013). Perceptions of Lean Design Management. Architectural Engineering and Design Management

9. 195-208.

Elsberg, & Daniel. (1961). Risk, ambiguity and the savage axoims. Quarterly journal of economics, 643-669.

Engineering, W. L. (2007, June 1). Leidraad voor Systems Engineering binnen de GWW-sector. Opgehaald van

http://www.leidraadse.nl/downloads

Environment, M. o. (2005, May 21). Handreiking Functioneel Specificeren. Opgehaald van

http://www.coinsweb.nl/downloads/Handreiking_functioneel_specificeren.pdf

Fayyad, U. P.-S. (1996). From data mining to knowledge discovery in databases. AI magazine, 17.

141

Frappaolo, C. &. (1997). Knowledge management: From terra incognita to terra firma. The knowledge management

yearbook 1999-2000, 381-388.

Gehry, F. (2017, 02 18). Frank Gehry Teaches Design & Architecture | Official Trailer. Opgehaald van

www.youtube.com: https://www.youtube.com/watch?v=Az-m56vUjgw

Glinz, M., & Wieringa, R. (2007). Guest editors' introduction: Stakeholders in requirements engineering. IEEE

Software 24, 18-20.

Grant, S., Kline, J., & Quiggin, J. (2009). A matter of interpretaion: bargaining over ambiguous contracts. Bond

University.

Halman, J., & Voordijk, J. &. (2008). Modular Approaches in Dutch House Building: An Exploratory Survey. Housing

Studies 23, 781-799.

Halpern, J. Y., & Kets, W. (2015). Ambiguous language and commong priors. Games and Economic behaviour, 171-

180.

Harris, P. W. (2017, December 12). HERACLITUS The Complete Philosophical Fragments. Opgehaald van Community

Middelbury: https://community.middlebury.edu/~harris/Philosophy/Heraclitus.html

Hull, E., Jackson, K., & Dick, J. (2006). Requirements engineering. Requirements Engineering 13.

IBM. (2016, October 18). The Four V's of Big Data. Opgehaald van http:/www.ibmbigdatahub.com/infographic/four-

vs-big-data

INCOSE. (2007). Systems engineering handbook: A guide for systems life cycle processes and activities. C. Haskins, Ed.

INCOSE. (2015). Systems Engineering handbook: A guide for system life cycle processes and activities. Hoboken, NY:

John Wiley and sons.

Jahan, A., & Edwards, K. L. (2013). Multi-criteria decision analysis for supporting the selection of engineering

materials in product design. Amsterdam: Elsevier.

Jallow, A., Demian, P., Anumba, C., & Baldwin, A. N. (2017). An enterprise architecture framework for electronic

requirements information management . International Journal of Information Management, 455-472.

John, G. H. (1997). Enhancements to the data mining process, PhD thesis. Stanford, USA: Stanford university.

Junnarkar, B., & Brown, C. (1997). Knowledge Management: An emerging discipline with a long history. Journal of

Knowledge Manamgent , 142-148.

Kelleners, R. (1999). Constraints in object-oriented graphics, PhD thesis. Eindhoven: Eindhoven University of

Technology.

Kim, T. W., Kim, Y., Cha, S. H., & Fisher, M. (2015). Automated updating of space design requirements connecting

user activities and space types. Automation in construction, 102-110.

King, M. (1983). Parsing Natural Language. London: Academic Press Inc. Ltd.

Kiviniemi, A. (2005). Requirements management interface to building product models. VTT Publications.

Knotten, V., Svaluestuen, F., Hansen, G., & Laedre, O. (2015). Design management in the building process - A review

of current literature. Procedia Economics and Finance 21, 120 – 127 .

142

Knotten, V., Svaluestuen, F., Hansen, G., & Laedre, O. (2017). Building design management – key success factors.

Architectural Engineering and Design Management, 479-493.

Knuth, D. (1964). Backus normal form vs. Backus Naur form, Letter to the editor.

Kocher, M., Lahno, A., & Trautmann, S. (2017). Ambiguity aversion is not universal. European Economoc Review.

Kock, N. F. (1997). The nature of data, information and knowledge exchanges in business processes: implications for

process improvement and organizational learning. The Learning Organization, 4, 70-80.

Laney, D. (2001). 3D data management: Controlling data volume, velocity and variaty. Stamford: META Group Inc. .

Leeuwen, J., Jessurun, A., & de Wit, E. (2004). "The Digital Dormer - Applying for Building Permits Online'. (pp. 355-

361). Rotterdam: Balkema.

Leijen, D. &. (2001). Parsec: Direct Style Monadic Parser Combinators For The Real World.

Liebich, T., Adachim, Y., Forester, J., Hyvarinen, J., Richter, S., & Chipman, T. (2013). Industry Foundation Classes

release 4 (IFC4) documentation.

Lu, W., Fung, A., Liang, C., & Rowlinson, S. (2017, June 1). Demystifiying construction project time-effort distribution

curces: a BIM and non-BIM comparison Weisheng. Opgehaald van

http://ascelibrary.org/doi/abs/10.1061/9780784413517.034

Lu, W., Fung, A., Peng, Y., & Liang, C. R. (2014). Cost-benefit analysis of BIM implementation in bulding projects

trough demystification of time-effort distributoins curves. Building and Environment 82, 317-327.

Malsane, S., Matthews, J., & Lockley, S. L. (2015). Development of an object model for automated compliance

checking. Automation in construction 49, 51-58.

Manning, C. &. (1999). Foundations of Statistical Natural Language Processing. Cambridge: The MIT Press.

Marchant, A. (2010). Obstacles to the flow of requiremnts verification. Systems Engineering 13.

Moonen, L. (2016). Improving the design process: The implications of automated verification of client specific

requirements using semantic web standards and rule checking techniques. Eindhoven: Eindhoven University

of Technology.

Nederland, B. (2014, May 13). Praktische Leidraad voor geintegreerd samenwerken met de UAVgc in de woning- en

utiliteitsbouw. Opgehaald van http://www.bouwendnederland.nl

Ng, A. (2017, June 23). Opgehaald van http://www.andrewng.org/publications/

Niemeijer, R. A. (2011). Constraint specification in architecture: A user-oriented approach for mass customization,

PhD thesis. Eindhoven: Eindhoven University of Technology.

Normalisatie-instituur, N. (1993). NEN 2574 - Construction drawings. Arrangement of data on building drawings.

Parr, T. &. (1995). ANTLR: A predicated-LL(k) parser generator. Software: Practice and Experience 25, 789-810.

Pels, e. a. (2013). Systems Engineering as a first step to effective use of BIM. Product lifecycle management for

society, 651-662.

Pozzali, A. &. (2015). Cognition, Types of "Tacit Knowledge" and Technology Transfer. In Cognitive Economics: New

Trends. , 205-224.

143

Prorail. (2015, May 15). Handboek Systems Engineering (SE) - Overzicht in processen, informatie en technieken.

Opgehaald van http://www.leidraadse.nl/downloads

Rekveld, Y. (2016). BIM Based Cost Estimation Knowledge Management . Eindhoven: Eindhoven University of

Technology.

Rijkswaterstaat. (2017, June 1). Procesbeschrijving systems engineering voor RWS projecten. Opgehaald van

http://www.leidraadse/nl/downloads

Samset. (2008). Prosjekt i tidligfasen: valg av konsept. . Tronheim.

Schaap, H., Bouwman, J., & Willems, P. (2017, June 3). COINS-referentiekader voor functioneel specificeren.

Opgehaald van www.coinsweb.nl

Scheithauer, D., Esep, I., & Forsber, K. (2013). V-Model Views.

Schneider, F., & Berenbach, B. (2013). A literature survey on international standards for system requirements

engineering. Procedia computer science, 16, 796-805.

Scott, R., & Trantis, G. (2006). Anticipating litigation in contract design. Yale Law Journal, 814-879.

Shishko, R., & Aster, R. (2007). NASA systems engineering handbook. Harvard.

Short. (2011). The law Library and Contract book. Opgehaald van

http://inform7.com/learn/eg/bronze/source_12.html

Siddharth, L., & Sarkar, P. (2017). A Methodology for Predicting the Effect of Engineering Design Changes . Procedia

CIRP 60 , 452-457.

Sipser, M. (1996). Introduction to the Theory of Computation. PWS Pub. Co.

Solihin, W., & Eastman, C. (2015). A knowledge representation approach to capturing BIM based rule checking

requirements using conceptual graph. Proc. of the 32nd CIB W78 Conference. Eindhoven.

Solihin, W., & Eastman, C. (2015). Classification of rules for automated BIM rule checking development. . Automation

in construction 53, 69-82.

Sparrius, A. (2014). The life cycle of a requirement. INCOSE international symposium 42, 417-436.

Spinellis, D. (1999). Reliable software implementation using domain-specific languages. ESREL, 10th european

software conference on safety and reliability ‘ESREL, 10th european software conference on safety and

reliability’.

Thompson, C., & Califf, M. &. (1999). Active learning for natural language parsing and information extraction. In Proc.

16th International Conf. on Machine Learning (1999), (pp. 406-414).

Tilley, P. A. (2005). Lean Design Managment- A New Paradigm for Managing the Design and Documentation Process

to Improve Quality. Proceedings of the IGLC-13.

Visser, A. (2011). Handboek specificeren. Ede: CROW.

Walker, D., Davis, P., & Stevenson, A. (2017). Coping with uncertainty and ambiguity through team collaboration.

International Journal of Project Management 35 , 180-190.

144

Walraven, A., & de Vries, B. (2009). From demand driven contractor selection towards value driven contractor

selection. Construction management and Economics 27, 597-604.

Wang, W. (2011). Ambiguity in language. Korea Journal of Chinese Language and Literature 1, 5-17.

Ward, J. S. (sd). Undefined by data: a survey of big data definitions. Fife, Scotland: University of St. Andrews .

Witten, I. (2005). Text mining, Practical handbook of internet computing. Boca Raton, Florida.: Chapman & Hall/CRC

Press.

Wix, J., Nistbet, N., & Liebtich, T. (2008). Using Constraints to Validate and Check Building Information Models. (pp.

467-476). France: CRC Press.

Zhang, C., Beetz, J., & Weise, M. (2015). Interoperable validation for IFC building models using open standards.

Journal of Information Technology in Construction, (pp. 24-39). Eindhoven.

Zhang, Y., Xiaofang, L., Zhao, Y., & Hong-chao, Z. (2015). An ontology-based knowledge framework for engineering

material selection. Advanced Engineering Informatics, 985-1000.

145

11 Appendices

11.1 Appendix A: Program design

Within this chapter, a detailed description of the system design will be given to clarify reasoning
and decision making for software development. The actual codes of the program are attached as
Appendices of this report, which might be very useful by reading this chapter. The program is
written by means of Java, which is a formal programming language. Java is known by the software
industry to be a high-level, object oriented programming language that uses a compiler. It is mostly
recognize for its, sometimes overdone, user-friendly environment which often causes major delays.
However, these delays have significantly decreased since Java 7 and 8 and is nowadays known to
be equal in speed compared to other object oriented languages such as C++. The average runtime
of the Java compiler is way faster in comparison to other programming languages. Still, the decision
on the implementation of this programming language was mostly related to the ease by the
creation of a GUI given the existing Java libraries (especially the javax.swing and java.awt libraries)
and personal knowledge and preferences. The developed program consists of ten classes,
containing the following classes, including the package name: building.BufferedReaderPlus,
building.Word.Def, building.Generate.Design, and building.Advisor, building.log.Log,
building.editor.Def, building.editor.DefFileEditor, building.editor.Sort, building.editor.WordCell,
building.editor.WordCellGroup.

How these classes are designed, structured, and related as a function of the initial system
requirements is described in a practical way within the upcoming paragraphs.

Figure 57: UML class diagram of the system

146

11.1.1 building.BufferedReaderPlus
The aim of this class is to provide an easier environment for handling the IO-operations of parsing
a file. Please note that this is a very general class written for multiple cases, so many functions won't
be used in this case. All function keeps track of the line counter of the file for debugging purposes.
The following gives a short description of each function within the program its code:

1.0 Constructor
The constructor is public and can accept four variables:

1. java.io.Reader reader
To use this class as a wrapper class for inputstreams.

2. int commentType
To determine the comment type that is used for parsing the file (see 1.2
readProccessedLine) for more info about this).

3. String singleCommentType
This determines the custom single line comment (see 1.2 readProccessedLine for more
info about this).

4. boolean isCsv
To determine whether the file should be read as a CSV file. Alters the functionality of the
following function: 1.2 readProccessedLine. This allows the use of the following functions:
1.4 readCSVCell, 1.5 readCSVLine.

1.1 public String readLine()
Reads a line from a file without enchantments. Uses the readLine method from its parent
(java.io.BufferedReader). If you only want to use this function from this class, then it’s better to
use “java.io.BufferedReader” instead.

1.2 public String readProcessedLine()
This function reads a line and ignores empty lines and comments. There are five comment modes
possible:

1. No comment type (only ignoring empty lines);
2. The character “#” denote the beginning of a single line comments. Therefore, everything

after “#” is ignored
3. The characters “//” denote the beginning of a single line comments, the characters “/*”

denote the beginning of a multiple line comments and the characters “*/” denote the end
of a multiple line comments. Therefore, everything after “//” and between “/*” and “*/” is
ignored;

4. The characters “/:\” denote the beginning of a single line comments;
5. A custom String Object denotes the beginning of a single line comments;

The type of comments can only be set once on creation of the object (see 1.0 Constructor for more
info). Also, if and only if the source file type is set to CSV, the trailing semi-colons are ignored. This
function uses the function 1.1 readLine to read the data from the file.

147

1.3 public static String removeCSVTrailings(String line)
This function removes all trailing semi-colons from the input line and outputs that line. Because
CSV files end with multiple semi-colons at the end of each line and it is annoying to read empty
cells several times just before you reach an EOL.

1.4 public String readCSVCell(boolean processed, {boolean lineBlock})
This function can only be used if the source file type is CSV. It is assumed that semi-colons are used
as separators (most used separator for CSV files). The boolean “processed” determines whether a
processed line or a not processed line should be read (see 1.1 readLine and 1.2 readProcessedLine).
The boolean “lineBlock” determines whether the function should check for a new line if the end of
the line was reached. The problem that arises concerning the line counter is solved by temporarily
storing the remaining line in a global variable. This function will also work without passing the
variable “lineBlock” (achieved through overloading functions). Default is false. This function is
recommended for single-cell data processing.

1.5 public ArrayList<String> readCSVLine (boolean processed, {boolean lineBlock})
This function does essentially the same as 1.4, but instead of reading one cell, it reads all cells on a
line and puts them in an ArrayList. This function is recommended for single-cell line data processing.

1.6 public void mark(int readAheadLimit)
This function makes the present location in the stream. After invoking “reset()” you jump back to
this location. Jumping back to this location cannot be guaranteed after “readAheadLimit”
characters were read from the stream. Uses the parent function mark(int readAheadLimit) to
handle the IO-operations concerning the file.

1.7 public void reset()
This functions resets to the last marked point in the stream. Uses the parent function reset(int
readAheadLimit) to handle the IO-operations concering the file.

1.8 public int getLineCounter()
This function returns the line counter of the file.

1.9 public int read()
Deprecated function
Unsupported operation. This function Throws an UnsupportedOperationException when called.
This function is used to prevent unnoticed reading from the file via the parent class. This should not
be used.

1.10 public static <A, B extends A> A[] listToArray(List list, Class classValue)
A generic function that converts the given List object “list” to an array of the same type or a child
of that type.

148

1.11 public static <A, B extends A> ArrayList<A> arrayToArrayList(B[] array, Class classValue)
A generic function that converts the given array “array” to an ArrayList object of the same type or
a child of that type.

11.1.2 building.log.Log
The Log class consists only of static methods which are used to easily create a log file including
timestamps, nice alignments and can be used for the most common classes. It has only two
functions:

2.1 public static void write(<?> text, {boolean full}, {boolean showDate})
This function writes a line in the log file. The variable “text” can be one of the following primitive
data types/classes:

 boolean

 characters

 int

 double

 Exception

 String

The boolean variable “showDate” determines whether a time-stamp or whitespaces must be
shown at the beginning of the line. This variable is optional for all of the above classes. The boolean
variable “full” can only be used for exceptions. It determines whether the full exception or the
shorter version should be used.

2.2 public static void clear()
Erases all data from the file. Then prints the current date and time on the first line.

11.1.3 building.GenerateDesign
This class has only one function and is used as a wrapper code for a function in “building.Advisor”
to create a better overview of the code.

3.1 protected static void generateDesing(HashTable<String, WordDef> definitions, String text,
int mostWords)
In this function is the input text “text” processed into three outputs using the library “definitions”.
Each output is written to a file. This is done to prevent an overflow in the output data (you need
more then 231 – 1 – 1 = 2.147.483.646 characters for that). It’s used to split the input into words,
determine the type of each word (e.g. noun, article, etc.), connect the words in the sentence (e.g.
an adjective tells something about a noun), determines meaning of that sentence and finally
converts that to plain definitions. Given the initial system requirements it is assumed to be
favourable, both technically and in usability, to attach more definitions (knowledge, information)
to a word over listing the same word with different definitions multiple times, so every definition
of a word is processed only once.

149

Pseudocode:
01 Create output writers “out1”, “out2” and “out3”

02 For every type “type”:

03 | Create new dynamic array “wordSeen”

04 | For every line “line” of the input:

05 | | For every word “word” in “line”:

06 | | | Search “word” in the definitions and put them in array "defs"

07 | | | For every definition “def” in “defs”:

08 | | | | If “wordSeen” contains “def”:

09 | | | | | discard "def" from "defs"

10 | | | | Else:

11 | | | | | add “def” to “wordSeen”

12 | | | | +

13 | | | +

14 | | | If first iteration of type “type”:

15 | | | | Print the String representation of “type” to “out2” and “out3”

16 | | | +

17 | | | If “type” == OTHER:

18 | | | | Print “word” and all definition of word of type “type” to writer

“out1”

19 | | | Else:

20 | | | | Print “word” and all definition of word of type “type” to writer

“out2”

21 | | | +

22 | | | Print all values of word “word” of type “type” to writer“out3”

23 | | +

24 | +

25 +

26

27 Log errors and warnings

28 Return

11.1.4 building.WordDef
This class is used as an easy way of storing and retrieving word definitions. Note that the actual
word is not stored in this class. This class also contains data fields for easy access and iteration of
the definitions.

4.0 Constructor
The constructor is public. This function creates a new definition of a word using word definitions,
NL-SfB class definitions (both named “def” in the code) and NL-SfB class specifications (named
“value” in the code). Each of them must be an array such that each definition type is defined.
Each element of the array contains an ArrayList containing all sub-definitions of a specific type.

1. ArrayList<String>[] newDefs
This definition stores the word definitions and NL-SfB class definitions of a word.

2. ArrayList<String>[] newValues
This definition stores the NL-SfB class specifications of a word.

150

4.1 private void setDef(ArrayList<String> newDefs, int I)
Deprecated function
Replaces the word definitions or a NL-SfB class definition of a word with the given definitions. This
function should not be used, or with extreme care. Might cause synchronization issues. “i” must be
one of the definition types.

4.2 public ArrayList<String> getDef(int i)
Returns the word definition, or a definition of the ith NL-SfB class.

4.3 public ArrayList<String>[] getAllDef()
Returns all word definitions and NL-SfB class definitions.

4.4 public ArrayList<String> getValues(int i)
Returns specification of the ith NL-SfB class type. “i” must be one of the predefined values of this
class.

4.5 public static String getTypeString(int num)
Returns the String representation of the word definition, or the numth NL-SfB class. Returns “ -
[TYPE NOT DEFINED] - ” if there was no match.

4.6 public static int getTypeFromString(String text)
Returns the integer representation of the word definition or NL-SfB class denoted by the input
text. Returns the definition “NONE” if there was no match.

4.7 public static String getDevValueString(int num)
Returns the String representation of num, where num denotes either the field “DEF” or the field
“VALUE”. Returns “ - [TYPE NOT DEFINED] - ” if there was no match.

4.8 public String toString()
Overrides the toString() method from the Object class for debugging purposes. Now, when a
String representation of this class is made, all definitions and specifications are printed correctly.

11.1.5 building.Advisor
This class creates the GUI for the application and should be created when the user wants to run the
program. A hash table is used for storing the definitions which will be used for translating the input
(see 3). This choice is made because each key (the word to search for) must have at least one value
(the definition). Also when we take a look at the running times for adding elements (add key and
value) and searching (given: key, search: value), then this is simply the best option since it does both
actions in constant time per element (using the simple uniform hashing assumption). Thus for
adding it depends only linearly on the number of input definitions in the file and for searching it
depends only on the number of words of the input text. The GUI of this application consists of
multiple parts:

151

 Input
This part consists of the text input block. The user can input the text to convert here.

 Output
This part consists of three output boxes. The one below the input shows the word
definitions. The one in the middle shows the NL-SfB class definitions. The one on the right
shows the NL-SfB class specification. Hyperlinks can be used in the output fields by defining
them as html hyperlinks. For this function the HyperlinkListener (see 5.18) is used.

 Buttons
This part consists of 5 (command) buttons:
◦ Lexical analysis button

Opens a webpage to “demo.ark.cs.cmu.edu/parse”, where the input can be analysed
on structure. The data from the input field is automatically filled in and generated on
the site. Uses ActionListener (see 5.17).

◦ Generate design button
Generates the design by using ActionListener (see 5.13).

◦ Open output file buttons (1, 2, 3)
Opens one of the output files by using ActionListener (see 5.14).

◦ Reload definitions button
Reloads the definitions by using ActionListener (see 5.15).

◦ Open definition file button
Opens the definition file by using ActionListener (see 5.16).

This class contains a lot of functions and sub-classes. All of these will now be discussed:

5.0 Constructor
The constructor is public. This function creates the class and starts up the application. It only
invokes the functions createGUI (see 4.3) and readDef (see 4.6).

5.1 private synchronized void generateDesign()
This method is used to invoke the wrapper function generateDesign (see 3.1).. First it checks if all
definitions were read (since the function readDef creates a multi-thread process which might
cause some synchronisation issues here, see 4.6). Then invokes the wrapper-function. After the
function has terminated normally and under the assumption that the output is written in the
predefined output files, reads these output file and copies their contents to the output panels of
the application. This method has the “synchronized” keyword. Therefore it is multi-thread safe
(only one thread is allowed at the same time).

Pseudocode:

01 Remove button listeners

02 Create the hash table “definitions”

03 Create reader “in”

04 Create “defType” = OTHER

05 Create “isDefOrValue” = DEF

06 Create arrays[num of types] of dynamic lists “def” and “value”

152

07

08 While EOF not reached:

09 | Read all cells and put them in order in array “line”

10 |

11 | For every element “cell” in “line”, start with 2nd element

12 | | If “cell” denotes a def/value change:

13 | | | Set “isDefOrValue” to resp. DEF or VALUE

14 | | | Continue

15 | | +

16 | | If “cell” denotes a def type change:

17 | | | Set “defType” to resp. one of the def types

18 | | | Continue

19 | | +

20 | |

21 | | If “isDefOrValue” == DEF:

22 | | | Add “cell” to“def”[“defType”]

23 | | Else:

24 | | | Add “cell” to “value”[“defType”]

25 | | +

26 | +

27 | Put value {“def”, “value”} with key “line”[0] in hash table

“definitions”

28 +

29

30 Log errors and warnings

31 Restore button listeners

32 Return

5.2 private void createGUI()
Creates the GUI of the application.

5.3 public String generateWebpage()
Generates the webpage URL for the lexical analysis.

5.4 private void addAllButtonListeners()
This method adds the actionListeners to the buttons. This method is used as an abbreviation for
writing each of these lines separately. It also prevents hard to trace bugs which might occur when
an extra actionListener is introduced and it should be added on multiple location but one of them
is forgotten.

5.5 private void removeAllButtonListeners()
This method removes all actionListeners from the buttons. The general idea behind this method is
the same as in 4.4.

5.6 public void readDef()
This function acts as a wrapper function. It creates a new thread from where it calls the
synchronized function readDefinitions (see 5.7). “synchronized” means that only one thread at a

153

time is allowed to execute the function. Other threads must wait till that one has finished. The idea
of using multiple Threads is that the application will never noticeably stop functioning, considering
that the loading time of the definitions takes some time to complete.

5.7 private synchronized void readDefinitions()
This function reads the definitions from the input file and puts them in the hash table (see intro 4).
It reads definitions if and only if (1) they were not yet read before or (2) a request was made to re-
read them. At first it removes all actionListeners from the buttons (see 4.5) to ensure that no other
actions can be invoked (e.g. a request for re-reading the definitions). Then it reads the definitions
form the CSV file using readCSVLine (see 1.4) of the class building.BufferedReaderPlus, and puts the
data in two array of ArrayList<String>’s, containing the definitions and the values of that word. This
part has been designed such that empty cells are ignored and the total number of cells can differ.
Also, for each definition can an arbitrary number definitions and values be assigned by putting a
star (*) and the String representation of the definition type in the cell before the definitions. To
change from definitions to values of a definition type, put a double star (**) with “value” written
after it in the cell before the value definitions of that definition type. Then a new WordDef is created
using two ArrayList<String>’s. This WordDef is than stored in a Hashtable<String, WordDef>, using
the word of which the definitions belong to as key. After putting the definitions in the hash table,
this method logs some data about the errors and/or warnings it had during reading of the
definitions. Finally it adds the ActionListeners back to the buttons (see 5.4) and sets the flag that all
definitions are now read to true.

5.8 public static boolean openFile(File file)
Opens the given File file with the default application. Logs an error if no application for that file type
was registered or the desktop was not supported.

5.9 public static boolean openWebpage(String stringURI)
Overloaded function for the openWebpage (see 5.10) function. Converts the string into an URI and
passes it on to function 5.10.

5.10 public static boolean openWebpage(URI uri)
Opens a webpage with URI uri as destination (the same concept as the search bar of your browser).
Returns true if the website could be opened and no Exceptions occurred. Otherwise return false
and log the Exception.

5.11 DocumentListener textAreaDocListener
Creates a new DocumentListener object which regulates a default text for an textArea. Overrides
the following functions from the DocumentListener class:

5.11.1 changeUpdate(DocumentEvent e)
This method is called when any change occurs. No action is taken.

5.11.2 insertUpdate(DocumentEvent e)
This method is called when one or more characters are inserted. This function checks if this was

154

the first character entered by the user. If so, remove all default text except for all characters
which were inputted by the used. Also colours the text black in that case. Here is assumed that
the text is inserted at the beginning of the text area (is ensured by 5.12). This function
temporarily removes itself from the caller and is executed on another thread because it
manipulates data which will otherwise lead to infinite recursive calls to itself.

5.11.3 removeUpdate(DocumentEvent e)
This function is called when one or more characters are deleted. This function checks if there
are still characters left. If none left, put the default text back and colour it grey. This function
temporarily removes itself from the caller and is executed on another thread because it
manipulates data which will otherwise lead to infinite recursive calls to itself.

5.12 CaretListener textAreaCaretListener
Creates a new CaretListener object. Only overrides the caretUpdate function from the CaretListener
class. This function sets the position of the cursor to the beginning of the text area. This function
temporarily removes itself from the caller and is executed on another thread because it
manipulates data which will otherwise lead to infinite recursive calls to itself.

5.13 ActionListener generateButtonActionListener
Creates a new ActionListener object. Only overrides the actionPerformed function from the
ActionListener class. This function is called when a certain action is performed by its caller. In this
case, since its only caller is a JButton object, it is a button press. This method requests to generate
the output by calling the method generateDesign (see 5.1).

5.14 ActionListener openOutputFileActionListener
Creates a new ActionListener object. Only overrides the actionPerformed function from the
ActionListener class. This function is called when a certain action is performed by its caller. In this
case, since its only caller is a JButton object, it is a button press. This method opens the output file
by calling the method openFile (see 5.8). Depending on which button was pressed, opens output
file 1, 2 or 3.

5.15 ActionListener editDefActionListener
Creates a new ActionListener object. Only overrides the actionPerformed function of the
ActionListener class. This function is called when a certain action is performed by its caller. In this
case, since its only caller is a JButton object, it is a button press. This method creates a new
DefFileEditor (see 5.5.6) and saves the definition file to a backup file (maximal 9 different backup
files can exits) if no DefFileEditor exists. Else set the previous created DefFileEditor visible. In any
case, add the windowAdapter closeWindow (see 5.21) to the mainframe.

5.16 ActionListener openDefFileActionListener
Creates a new ActionListener object. Only overrides the actionPerformed function of the
ActionListener class. This function is called when a certain action is performed by its caller. In this
case, since its only caller is a JButton object, it is a button press. This method opens the definition

155

file by calling the method openFile (see 5.8).

5.17 ActionListener openParserActionListener
Creates a new ActionListener object. Only overrides the actionPerformed function of the
ActionListener class. This function is called when a certain action is performed by its caller. In this
case, since its only caller is a JButton object, it is a button press. This method opens the webpage
to the online parser when the parser button is pressed. Also inputs the data from the input field in
the input of the online parser. Uses the function generateWebpage (see 5.3) to generate the link
for the webpage and the function openWebpage (see 5.9) to open the webpage.

5.18 HyperlinkListener openHyperlinkListener
Creates a new HyperlinkListener object. Only overrides the hyperlinkUpdate function from the class
HyperlinkListener. This function is called when an action is performed on a hyperlink i.e. the
hyperlink was clicked. Uses the function openWebpage (see 5.9) to open the webpage.

5.19 ComponentListener windowResizeListener
Creates a new ComponentListener object. Only overrides the componentResized function from the
ComponentListener class. This function is only called when the size of the main frame is resized.
Uses the function update (see 5.20) to update the GUI of the main frame.

5.20 public void update()
This function is called when the dimensions of the main frame have changed, or when a GUI update
is required. In this case. This method sets all fields according to the new dimensions for a smooth
look.

5.21 WindowAdapter closeWindow
Creates a new WindowAdapter object. Only overrides the windowClosing function from the
WindowListener class. This function is called when the application is closed. This class is only used
when the DefFileEditor is visible and asks if the user really wants to close the application since any
unsaved changes in the editor will not be saved. Also waits till all writers of the editors have stopped
writing.

5.22 public void updateMaxWordLength(int mostWordsNew)
This function is only called by the DefFileEditor when a new entry was saved. This method updates
the maximal number of words in a definition. Note that there is no function for deleting entries,
because it does not the affect correctness of the application and is calculated correctly when the
program is restarted.

5.23 ActionListener showHideOutput_1AL
Creates a new ActionListener object. Only overrides the actionPerformed function of the
ActionListener class. This function is called when a certain action is performed by its caller. In this
case, since its only caller is a JButton object, it is a button press. In this case, it is the show/hide
button for the word enrichment field. This function changes the text of the show/hide button,

156

adds/removes the word enrichment field and updates the GUI of the application.

5.24 public void notifyClosedDefEditor()
This function is only called by DefFileEditor when it closes. This method removes the
windowAdapter closeWindow (see 5.21) from the main frame, sets the DefFileEditor not visible and
sets the default close operation of the application to exit on close.

11.1.6 building.editor.DefFileEditor
This class is used to create the GUI and to handle all actions concerning the IO between the advisor,
the editor and the user. To prevent multiple not updated versions of library, there is used exactly
one instance of the Hashtable containing all definitions, but multiple pointers pointing to it.

When the editor is created, a backup file is made to prevent unexpected data loss in case in the
most common types of system or application failures, or human errors.

The GUI consists three main panels:

 Layout bar
With the buttons on this bar you can add the html code for bold, italic, underline and a
weblink for the definitions. See 7.12 for more info.

 Token configuration
This consists of three parts:

o Input word
The word the token defines is shown/edited here

o Definition panel
In this panel appear all definitions of the input word. You can add a definition by
pressing the “Add definition” button. Every definition consists of four parts:

 Definition or NL-SfB class
Here you can select whether you want to define a definition of the word or
a class definition.

 Type or class definition/specification
If you selected “definition”, you can choose the type of definition of the
word. If you selected a NL-SfB class, you can choose for either a class
definition or a class specification.

 Input field
The data you want to put in the definition.

 Checkbox
To select the definition.

o Buttons
There are five buttons:

 Edit entry
This button loads the entry selected in the database panel from the (local)
library to the definition panel. Note that pressing this button will erase

157

unsaved data from the previous edited entry.
 Save entry

Saves the currently displayed entry to the library. Note that this does NOT
save the entry to the definition file, but only in the cache of the application.
This means that you can use it for this session only.

 Save changes
Saves the current library to the definition file. Note that this does NOT
include the unsaved entry currently displayed, so use the save entry before
saving the changes.

 Del selected def(s)
Deletes all selected definitions. A definition can be selected by pressing the
checkbox on the right of that entry.

 Delete entry
Deletes the entry selected by the database panel. Note that this does NOT
delete the entry currently displayed in this panel.

 Database panel
This panel consists of two parts:

o Search bar
Here you can enter a search term and press the “Search” button to decrease the
amount of entries you have to look at before finding the right one. Note that only
the first part of an entry is compared to the search term, so searching for “bc” will
not yield the entry “abc”.

o Database entries
In this part, the words that are defined in the database are displayed in two
columns in alphabetical order (from left to right, top to bottom, other characters
first, then numbers, then letters).

This class contains a lot of functions and sub-classes. All of these will now be discussed:

6.0 Constructor
The constructor is public. This function creates the GUI of the editor, sets some initial values for
variables and adds listeners to the buttons. It takes the following as input: Advisor advisor, File
defFile, File bacFile, Hashtable<String, WordDef> defs, int locX, int locY “advisor” denotes the caller
class. This variable is passed to create a smooth communication between the two classes. “deFile”
denotes the file which stores the definitions. “bacFile” denotes the file where the backup file should
be stored. “Hashtable<String, WordDef>” denotes the library, “locX” and “locY” denote the initial
x- and y-coordinates of the editor main frame. This constructor uses the invokeLater function from
SwingUtilities because otherwise the generation of the GUI might cause the application to halt for
a certain amount of time.

6.1 createBACThread()
Creates a new Thread that makes a copy of the current definition file and writes it to the backup
file.

158

6.2 private void addDef(Def def)
Adds a definition to the definition panel, adds a CaretListener to def to keep track of the last location
of the cursor and revalidates “def” because the JComboBox has some issues with correctly
displaying after being added to a visible component (known issue in Java).

6.3 private void removeDef(Def def)
Removes a definition from the definition panel. Also removes the CaretListener to keep track of the
cursor and if this field was the last one visited of all Defs, set that pointer to null.

6.4 private void clearDefs()
Deletes all definitions from the definition panel. Recursively calls the function removeDef (see 5.3).

6.5 private void addSearchResult(String name)
Adds an entry to the database entry panel, sets the size and location for the new WordCell (see
5.5.9) and adds it to the WordCellGroup (see 5.5.10).

6.6 private void removeSearchResult(WordCell wc)
Deletes an entry from the database entry panel and from the database. Also removes the WordCell
from the WordCellGroup.

6.7 private void hideSearchResult(WordCell wc)
Removes an entry from the database entry panel and removes the WordCell from the
WordCellGroup.

6.8 ComponentAdapter windowResizeListener
Creates a new ComponentAdapter object. Only overrides the componentResized function from the
ComponentListener class. This function is called when the main frame of the editor is resized. Only
calls the function updateGUI (see 6.9) to update the GUI of the editor.

6.9 public void updateGUI(Boolean full)
Updates the GUI of editor. “full” denotes whether a full update or an intermediate update should
be done.

6.10 ActionListener buttonActionListener
Creates a new ActionListener object. Only overrides the actionPerformed function of the
ActionListener class. This function is called when a certain action is performed by its caller. In this
case, since its only caller is a JButton object, it is a button press. This function is executed on another
Thread to prevent the program from blocking and reducing the use of the Swing Thread. This
listener is added to all buttons of the editor and handles their actions as described in the
introduction of 5.5.6.

159

6.11 public void waitForWriteClose()
This function intentionally blocks until all write actions of the editor are finished.

6.12 private void insertText(String front, String back, String… optional)
This technique inserts in the last text field of a Def that had focus the String denoted by “front” at
the last known cursor position or at the begin of the last known selection (if there was one), the
String denoted by “back” at the last known cursor position (but after “front”) or at the end of the
last known selection (if there was one). The String in the array “optional” are placed between
“front” and “back” if there was no selection.

6.13 public void saveCurrentEntry()
This function saves the current displayed entry to the definitions, and is only called via
tonActionListener (see 7.10)by the “Save entry” button. Also updates the database panel with the
new entry.

6.14 public void updateDefinitions(Hashtable<String, WordDef> defs)
When the definitions are read by the Advisor class, a new library is created. To keep both programs
synchronized, the definitions can be updated in this method.

6.15 CaretListener defCaretListener
Creates a new CaretListener object. Only overrides the caretUpdate function from the CaretListener
class. This function keeps track of the last selected text field of the Defs, including the position of
the cursor and selections. This is needed for inserting text using the layout buttons.

6.16 WindowAdapter windowClosed
Creates a new WindowAdapter object. Only overrides the windowClosing function from the
WindowListener class. This function is called when the editor is closed and waits with closing till all
writers are done (see 6.11) and notify the Advisor class that the editor was closed. Note that the
editor does not really close, it only is not visible.

6.17 public void setVisible(Boolean visible)
Sets the visibility of the main frame.

6.18 DocumentListener textAreaDocListener
Creates a new DocumentListener object which regulates a default text for an text area. Overrides
the following functions from the DocumentListener class:

6.18.1 changeUpdate(DocumentEvent e)
This method is called when any change occurs. No action is taken.

6.18.2 insertUpdate(DocumentEvent e)
This method is called when one or more characters are inserted. This function checks if this was
the first character entered by the user. If so, remove all default text except for all characters
which were inputted by the user. Also colors the text black in that case. Here is assumed that

160

the text is inserted at the beginning of the text area (is ensured by CaretListener 7.19). This
function temporarily removes itself from the search bar and is executed on another thread
because it manipulates data which will otherwise lead to infinite recursive calls to itself.

6.18.3 removeUpdate(DocumentEvent e)
This function is called when one or more characters are deleted. This function checks if there
are still characters left. If none left, put the default text back and colour it grey. This function
temporarily removes itself from the caller and is executed on another thread because it
manipulates data which will otherwise lead to infinite recursive calls to itself.

6.19 CaretListener textAreaCaretListener
Creates a new CaretListener object. Only overrides the caretUpdate function from the CaretListener
class. This function sets the position of the cursor to the beginning of the text area of the search
bar. This function temporarily removes itself from the search bar and is executed on another thread
because it manipulates data which will otherwise lead to infinite recursive calls to itself.

6.20 public void search()
Shows only those entries in the database panel that match the search requirements.

6.21 Action nullAction
Creates an action that does nothing. This action is used to disable the enter key for JTextAreas.

11.1.7 building.editor.Sort
This is a static class that can sort text, which is used for sorting the WordDefs in the database panel.
It has the following functions:

7.0 Constructor
Deprecated function
This is a static class, so no instances of this class should be made.

7.1 public static Object[] textBubbleSort(String[] inArray, Object[] meta, int typeLetters, int
typeNum, int sortingHint, int lengthHint)
Uses bubble sort to sort the Strings in “inArray” with corresponding metadata “meta”, using the
typeLetters, typeNum, sortingHint and lengthHint as ruleset. The variable “meta” is optional. If
“meta” is not given or null, then the String array is returned in order. If “meta” is not equal to null,
then its length must be equal to “inArray”, and the returned value is the metadata in sorted order
(using the strings for sorting). The comparison is done by the function inOrder (see 7.2).

7.2 public static boolean inOrder (String str1, Str2, int typeLetters, int typeNum, int sortingHint,
int lengthHint)
Returns true if str1 >= str2, using typeLetters, typeNum, sortingHint and lengthHint as ruleset.
Returns false otherwise.

161

11.1.8 building.editor.Def
This class extends JPanel and contains the components for editing one definition of a word. It
contains three JComboBoxes (dropdown menus), one JTextArea (text input) and one JCheckBox
(checkbox). The leftmost JComboBox denotes whether the definition denotes a word definition or
a NL-SfB class. If the first JComboBox denotes a word definition, then the second JComboBox
denotes a definition type, and if the first JComboBox denotes a NL-SfB class, then the second
JComboBox denotes either a NL-SfB class definition or a NL-SfB class specification. To also store the
previous choice of the user when the other option is selected in the first JComboBox, two
JComboBoxes are used, but only either one of them is displayed. The JTextArea denotes the
definition and the JComboBox on the rightmost side is used for (de-)selecting the definition. The
class has the following functions:

8.0 Constructor
The constructor can take the following parameters as input:

 int type
This denotes either the word definition or a NL-SfB class. This parameter is optional, but
linked with “defValue” and “text”.

 int defValue
In the case that “type” denotes a word definition, this denotes a the definition type of a
word, and in case that “type” denotes a NL-SfB class, this denotes the NL-SfB-class
definition or specification. This parameter is optional, but linked with “type” and “text”.

 String text
This denotes the text that should be in the text area of the definition. This parameter is
optional, but linked with “type” and “defValue”.

 int width
This denotes the width of the object. The height is set automatically. This parameter is
optional.

 int spacing
This denotes the spacing used between the components.

8.1 public JComboBox<String> getTypeSelector()
Deprecated function
Returns the NL-SfB class/word definition selector. The returned object can only be used as READ-
ONLY since there is no checking done. However, this allows to add listeners to this selector and
makes it possible to use it in comparisons.

8.2 public JComboBox<String> getDefValueSelector()
Deprecated function
Returns the NL-SfB class definition/specification selector. The returned object can only be used as
READ-ONLY since there is no checking done. However, this allows to add listeners to this selector
and makes it possible to use it in comparisons.

162

8.3 public JComboBox<String> getDefDescrSelector()
Deprecated function
Returns the definition type selector. The returned object can only be used as READ-ONLY since
there is no checking done. However, this allows to add listeners to this selector and makes it
possible to use it in comparisons.

8.3 public JTextArea getDescrField()
Returns the description field. This function is not deprecated because the layout of this JTextArea
is managed by the layout manager of a JScrollPane.

8.4 public boolean isSelected()
Returns true if the checkbox is selected. False otherwise.

8.5 public void setType(int i)
Sets the word definition or a NL-SfB class selector, where i is a number from one of the variables
of the class building.WordDef (see 5.5.4).

8.6 public setDefValue(int i)
Sets the Nl-SfB class definition or specification selector, where i is a number from one of the
variables of the class building.WordDef (see 5.5.4).

8.7 setSpacing(int spacing)
Sets the spacing between the Objects in the Def.

8.8 public void setBounds(int x, int y, int width, int height)
Resizes and sets the location of the Objects in the Def such that they exactly fit in the resized
JPanel.

8.9 protected void paintBorder(Graphics g)
Used to add a custom border to the Def.

8.10 ItemListener itemListener
Creates a new ItemListener object. Only overrides the itemStateChanged function from the
ItemListener class. This listener checks if the first JComboBox changes from the option word
definition to a NL-SfB class or vice versa. If such a change occurs, then set the second JComboBox
accordingly.

11.1.9 building.editor.WordCell
This class extends JPanel and is a simple selectable cell containing text and supports showing focus
and showing selection. Should be added to a building.editor.WordCellGroup (see 5.5.10) for easy
handling interaction between multiple WordCells. The WordCells are used to display the entries in
the database panel. This class has the following methods

163

9.0 Constructor
The constructor has as input a String containing the text to be displayed on the box.

9.1 public void setSelected(Boolean select)
Deprecated function
This function changes the look of the cell to a selected cell. This function is deprecated because
setting cell selections should be done by a building.editor.WordCellGroup (see 5.5.10).

9.2 public void setFocus(Boolean select)
Deprecated function
This function changes the look of the cell to a cell that has focus . This function is deprecated
because setting cell focus should be done by a building.editor.WordCellGroup (see 5.5.10).

9.3 public boolean isSelected()
Returns true if the cell is displayed as a selected cell. Returns false otherwise.

9.4 public boolean hasFocus()
Returns true if the cell is displayed as a focussed cell. Returns false otherwise. Note that this
function does NOT determine whether the actual component has focus. It only tells you what it is
currently displaying.

9.5 public String getText()
Returns the text that was set in the constructor (see 9.0).

9.6 protected void paintComponent(Graphics G)
Paints the background and the text of the cell.

9.6 protected void paintBorder(Graphics G)
Paints the custom borders for the cell.

11.1.10 buidling.editor.WordCellGroup
This class makes the cooperation between building.editor.WordCells (see 5.5.9) much easier. This
class has the following methods:

10.0 Constructor
The constructor has two parameters as input:

 int type
This denotes the rules that the WordCells in the group have to follow. Must be one of the
predefined values in this class. This parameter is optional.

 WordCell… wcs
This denotes an array of WordCells that should initially be added to the group. This
parameter is optional.

164

11.1 MouseAdapter oneSelectMouseListener
Creates a new MouseAdapter object. Only overrides the mousePressed function from the
MouseListener class. This function is used to (de-)select a WordCell that had a ClickEvent and set
(visible) focus to that cell. Deselects any other WordCell. This MouseAdapter is used for the type
TYPE_SELECT_ONE_ONLY.

11.2 public void setType(int type)
Set the rule for the WordCells in this group. Must be one of the predefined values in this class.

11.3 private void addRightListener(WordCell wc)
Adds the correct listener to a WordCell. Currently only the types TYPE_NONE and
TYPE_SELECT_ONE_ONLY are available.

11.4 public void add(WordCell wc)
Adds the WordCell wc to the group. Note that you can add the same WordCell multiple times.
However, this will probably result in strange behaviour.

11.5 public WordCell remove(WordCell wc)
Removes the WordCell wc from the list. Note that if the WordCell occurs more than once, only
one of them is removed.

11.6 public void clear()
Removes all WordCells from the group.

11.7 public int size()
Returns the size of the group.

11.8 public ArrayList<WordCell) getGroupArrayList()
Returns a copy of the WordCells in this group
11.9 public WordCell getLastSelected()
Returns the last selected WordCell.
11.10 public void sortWordCells()
Uses the function textBubbleSort (see 7.1) building.editor.Sort class (see 5.5.7) to sort the
WordCells.
11.11 public boolean contains(WordCell wc)
Returns true if the WordCell wc is in this group. Otherwise return false.
11.12 public boolean containsName(String name)
Returns true if the name occurs as text for at least one of the WordCells in this group. Otherwise
return false.

165

11.2 Appendix A: building.BufferedReaderPlus

166

167

168

169

170

171

172

173

11.3 Appendix B: building.log.Log

174

11.4 Appendix C: building.GenerateDesign

175

176

177

178

11.5 Appendix D: building.WordDef

179

11.6 Appendix E: building.Advisor

180

181

182

11.7 Appendix F: building.editor.DefFileEditor

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

11.8 Appendix G: building.editor.Def

202

203

204

205

206

11.9 Appendix H: building.editor.Sort

207

208

209

210

211

11.10 Appendix I: building.editor.WordCell

212

213

214

11.11 Appendix J: building.editor.WordCellGroup

215

216

217

