

The integration of dispersed

building information by using

Linked Data principles

A RESEARCH ABOUT THE SEMANTIC WEB FOR

ENRICHING AND LINKING HETEROGENEOUS DATA SETS

TO IMPROVE THE PERFORMANCE OF BUILDINGS

BY R.R.B. (RAKESH) KALPOE

EINDHOVEN UNIVERSITY OF TECHNOLOGY

CONSTRUCTION MANAGEMENT & ENGINEERING

SEMMTECH

DOMAIN CONSULTANCY

July 8, 2016

: Final version

1

The integration of dispersed building

information by using Linked Data principles

A RESEARCH ABOUT THE SEMANTIC WEB FOR ENRICHING AND LINKING

HETEROGENEOUS DATA SETS TO IMPROVE THE PERFORMANCE OF

BUILDINGS

Author : R.R.B. (Rakesh) Kalpoe
Student number : 0874207
E-mail : r.r.b.kalpoe@student.tue.nl

Date of final presentation : July 8, 2016
Place : Eindhoven

UNIVERSITY
University : Eindhoven University of Technology (TU/e)
Faculty : Faculty of the Built Environment
Master track : Construction Management & Engineering (CME)

IN COLLABORATION WITH
Company : Semmtech
Division : Domain Consultancy

GRADUATION COMMITTEE
prof.dr.ir. B. (Bauke) de Vries : TUE University supervisor (chairman)
dr.dipl.-ing J. (Jacob) Beetz : TUE University supervisor
PhD- Candidate C. (Chi) Zhang : TUE University supervisor
ir. J. (Jerrel) Yzer : Semmtech External Supervisor

2

3

Preface

This master thesis is the final project of my master Construction Management & Engineering (CME)
at the Eindhoven University of Technology. I’m glad to present my thesis to you as a reader which
which will explore the 2 phenomena: Building Information Modeling and the Semantic Web. The last
6 months were a great opportunity for me to obtain new insights and set directions for formulating
new goals in my future career.

This thesis has been conducted under the supervision of Semmtech which I would like to thank for
allowing me to implement my research within a real world use case. Thereby, I would like to thank all
colleagues for having a great time and especially my mentor Jerrel Yzer for his constructive feedback,
support and insights. I would like to highlight the support by Daan Oostinga, Mike Henrichs, Nic
Roest, Sander Stolk and Mohamed Moresey as well for helping me in their own way in regard to my
graduation work and/or to me as a person.

I would like to express my gratitude for the feedback and support by TUE- mentor Jakob Beetz, as
well for the discussions about the construction domain in general. Also I would like to thank PhD
candidates Chi Zhang for his discussions about the Semantic Web and Thomas Krijnen for his advice
regarding Building Information Modeling.

Also I would like to thank several companies for their input via conducted interviews. Thereby I
would like to point out the help by Devlin Talman of Smits Bouwbedrijf for supporting me with a
proper Revit – IFC mapping. Last but not least, I would like to thank my family and friends for their
overall support.

I hope you all will enjoy reading this thesis as much as I carried out the research project.

Rakesh Ravi Bidjaipersad Kalpoe

4

5

Summary

Within the Dutch AEC domain government policies demand increasingly from construction projects,
that they have to be implemented by performance based contracts. Because currently the number of
such projects of the Dutch government in the Operation and Maintenance (O&M) phase increases,
efficient contract management by the Dutch government is becoming more crucial in checking if the
actual building performance complies to the agreed output specifications (OS). At the same time more
heterogeneous non- geometric data is being produced in the O&M stage than ever before. Examples
are: energy usage, indoor climate data, utility information, occupancy patterns, weather data,
scheduling software, financial control etc. From literature study and conducted interviews with several
companies, it has been found that often there is little interaction between these sensor data silos.
However, cross- domain sensor data is seen as essential to understand the performance and optimize
the operation of a building (by Facility Management) to ensure it is meeting the requirements of the
organization/occupants. In short, building owners require more from their assets while the need to
synchronize heterogeneous data sources become thereby more prevalent.

Even though the BIM approach has shown various improvements it has been criticized by academia as
well as by construction businesses. Namely, it appears that the amount of non-geometric information
within the AEC domain - especially data from the operational phase - cannot be stored in a central
Building Information Model while it also provides limited interoperability in regard to sharing and
integration of dispersed data sets.

The fundamental concept of Linked Data (which is based upon the Semantic Web) is that data is
especially created with the mindset that it will be integrated and reused by others while being
expressed by various vocabularies. Representing data by using the principles of the Linked Data model,
will allow it to be combined with Linked Data from other relevant cross domain silos. In doing so,
organizations can generate and extract additional value from current stand- alone repositories, across
multiple disciplines.

So, because of the possibilities Linked Data provides, this thesis focused upon the following research
question: “In which way could linked sensor data be integrated into the BIM model to check the
performance of its associated building based upon the agreed specifications during the operations &
maintenance phase?”

In order to provide an answer to this question, a use case was carried out. From the National Military
Museum in Soest, 3 heterogeneous data sets were obtained, namely: A temperature dataset of 8
exposition rooms, a building model and 1 requirement. This requirement stated that a temperature
sensor value of a certain room should always be between a specified lower boundary and a specified
upper boundary.

From a brief analysis of these data sets, it was found that each data set could be linked together based
upon each room. The building model describes namely the rooms (i.e. in a geometrical way) which
serve at the same time as an installed location for sensors while it is being specified by the output
specification. So it was sought to engineer a combined ontology which allows enriching and defining
the requirements and temperature sensor data in an explicit way and could enable the visualization of
which rooms in the associated building model do not comply to the OS.

The building information model was generated into a RDF data model (via a proven IFC-RDF converter)
according to the IfcOWL ontology. The sensor data set was semantically expressed according to the
following ontologies: SSN, time, QUDT, XSD and DUL. In regard to the requirement data set, it
occurred that there were no tested (let alone widely accepted) ontologies. For this reason, an own

6

Systems Engineering (SE) ontology was engineered. Thereby an ontology pattern was used (multiple
information models based upon the SE ISO 15288 standard). In order to convert the latter two data
sets in actual RDF data models the generic CSVW procedure was used. The URI- pattern to identify
resources in those 2 graphs was constructed as:
http://{domain}/{type}/{concept}/{reference}.

In total, 10 RDF graphs (1 IFC- RDF graph, a temperature RDF data set of each of the 8 exposition
rooms and the OS data set in RDF) were imported into the same repository of a triplestore, after being
successfully validated.

Thereafter, the sensor- and requirement data were linked to the IFC- RDF graph. This happened by
linking room instances which represented the same resource together. For example, the rooms 191
(in the IFC- RDF graph), Hoofdthema1NederlandEnDeWereld (in the OS graph) and
KrijgsmachtbredeThemaruimte1 (in the sensor data graph) all represent the same entity in the real
world. The mapping procedure was conducted by using the owl:SameAs predicate.

Furthermore, the IF-ELSE logic of a SELECT SPARQL sub query to a remote triplestore was used for the
retrieval of the GUIDS of building rooms of which the observed sensor values exceeded the specified
upper and lower boundaries. This query was formulated in such a way it could make use of the REST
architecture of the Web. The retrieved results were then used to provide virtually a RGB (Red-Green-
Blue) color to the IfcSpace elements in the BIM model of the National Military Museum. The color
red was used to indicate rooms that did not comply to the requirement, while green colored rooms
did comply to the OS.

Finally, it can be said that the outcome of this research provides insights in how to express, access,
integrate, retrieve and reuse data sets in a meaningful way by the means of open standards.
In this way, the client would (and/or the occupants would) be able to use a building that is able to
satisfy their needs while the contractor is able to operate the building more effectively. Ultimately, the
developed proof of concept in this research has shown that by using open Semantic Web technologies
it is possible to improve interoperability between different building disciplines and thereby enhancing
the building performance of construction objects within the AEC industry.

7

Samenvatting

Het overheidsbeleid eist in toenemende mate van de de Nederlandse bouwindustrie dat haar
bouwprojecten worden uitgevoerd middels DBFMO- prestatiecontracten. Omdat op dit moment
tevens het aantal DBFMO- projecten in de beheer- fase van de overheid alsmaar toeneemt, wordt
efficiënt contract management steeds essentiëler bij het controleren of de feitelijke prestaties van
gebouwen voldoen aan de overeengekomen outputspecificaties (OS). Tegelijkertijd wordt er in de
beheerfase meer heterogene niet- geometrische sensor data geproduceerd als ooit tevoren.
Voorbeelden hiervan zijn: energieverbruik, data over het binnenklimaat, aanwezigheidspatronen,
weergegevens, financiele data etc. Op basis van literatuurstudie en interviews met verschillende
bedrijven, is geconstateerd dat er vaak weinig interactie is tussen deze sensor data silo’s. Echter, het
samenbrengen van deze sensor data wordt gezien als een essentieel instrument om de
gebouwprestaties te begrijpen en te optimaliseren (door het facilitair management) en daarmee
ervoor te zorgen dat het gebouw voldoet aan de eisen van de eigenaar/bewoners. Kortom, eigenaren
van gebouwen eisen meer van hun bouwobjecten, terwijl de noodzaak om heterogene
gegevensbronnen te synchroniseren steeds belangrijker wordt.

Ondanks dat de BIM- ontwikkeling diverse verbeteringen heeft aangetoond binnen het bouwdomein,
wordt het bekritiseerd vanuit zowel de academische wereld als het bedrijfsleven. Het blijkt namelijk
dat de hoeveelheid niet- geometrische informatie binnen de gebouwde omgeving - en dan met name
de data die wordt geproduceerd in de operationele fase - niet kan worden opgeslagen in een centraal
BIM model. Daarnaast blijkt ook dat het model te beperkte compatibiliteit mogelijkheden kent ten
aanzien van het delen en integreren van heterogene informatiestromen.

Het fundamentele concept van de Linked Data benadering (die tevens is gebaseerd is op het
Semantisch Web) is dat gegevens zodanig worden gestructureerd, dat deze juist op eenvoudige wijze
geïntegreerd als hergebruikt kunnen worden door anderen. Door data sets uit te drukken volgens de
principes van het Linked Data model, is het mogelijk om de verrijkte informatie te linken met andere
relevante (geisoleerde) data silo’s. Op deze manier, is het mogelijk dat organisaties toegevoegde
waarde te kunnen creëren middels individuele databases die in bezit zijn van verschillende disciplines.

Vanwege de mogelijkheden die Linked Data kent, richt deze scriptie richt zich op de volgende
onderzoeksvraag: "Op welke wijze kunnen sensor gegevens worden gelinkt aan het BIM- model om zo
de prestaties van het bijbehorende gebouw in de beheerfase te beoordelen op basis van de
overeengekomen outputspecificaties?'

Om de onderzoeksvraag van een deskundig antwoord te voorzien, is er een casus uitgevoerd. Zo zijn
er van het Nationaal Militair Museum in Soest de volgende 3 heterogene datasets verzameld: Een
temperatuur dataset van 8 expositieruimten, een gebouw model en 1 outputspecificatie. Deze eis
houdt in dat een gemeten temperatuursensor waarde van een bepaalde expositieruimte zich altijd
tussen een bepaalde onder- en bovengrens dient te bevinden.

Op basis van een beknopte analyse van de datasets blijkt dat elke gegevensset met elkaar kan worden
gekoppeld via de expositieruimten. Het gebouwmodel beschrijft namelijk de expositieruimte (o.s. op
een geometrische manier), die tegelijkertijd als geïnstalleerde locatie dient voor de sensoren terwijl
diezelfde ruimte wordt gespecificeerd door de outputspecificatie. Daarom is er in dit onderzoek
gezocht naar een manier om een gecombineerde ontologie te ontwikkelen die het mogelijk maakt om
de temperatuur- en outputspecificatie datasets te verrijken en te structureren op een expliciete
manier en daarmee de ruimtes die niet voldoen aan de OS te visualiseren in het bijbehorende
bouwwerkinformatiemodel.

8

Het IFC- bouwinformatiemodel werd omgezet in een RDF- informatiemodel (via een bewezen IFC- RDF
converter) dat was uitgedrukt in de IfcOWL ontologie. De sensor data set werd semantisch uitgedrukt
middels de volgende ontologieën: SSN, tijd, QUDT, XSD en DUL. Bij de outputspecificatie dataset,
kwam naar voren dat dat er geen geteste (laat staan algemeen aanvaarde) ontologie bestond. Omwille
van deze reden werd een eigen Systems Engineering (SE) ontologie ontwikkeld. Hiervoor werd er een
template gebruikt in de vorm van enkele informatie-modellen die waren gebaseerd op de SE ISO
15288 norm. Bij het uitdrukken van ieder van de twee laatstgenoemde gegevensverzamelingen in een
RDF informatiemodel is de generieke CSVW procedure toegepast. De URI- patroon om de entiteiten in
die datasets uit te drukken werd geconstrueerd als:
http://{domain}/{type}/{concept}/{reference}.

In toaal waren er 10 RDF- informatiemodellen ontwikkeld (1 IFC- RDF graaf, een temperatuur sensor
RDF data set voor elk van de 8 expositieruimten en een OS informatiemodel in RDF), gevalideerd en
vervolgens geïmporteerd in dezelfde triplestore.

Daarna werden de sensor- en eisen data sets gelinkt met de IFC- RDF graaf. Dit gebeurde door het
koppelen van de expositieruimten in elke dataset die dezelfde entiteit vertegenwoordigde.
Bijvoorbeeld, de expositieruimten 191 (in de grafiek IFC- RDF), Hoofdthema1NederlandEnDeWereld
(in de grafiek OS) en KrijgsmachtbredeThemaruimte1 (in de sensorgegevens grafiek) drukten allen
dezelfde entiteit uit. Het linken van de datsets werd uitgevoerd met behulp van de owl:sameAs
predikaat.

De IF-ELSE logica van een SELECT SPARQL was toegepast om de online triplestore te bevragen en zo de
GUIDs op te halen van de expositieruimtes, waarvan de waargenomen temperatuur sensorwaarden
de gespecificeerde boven- en ondergrenzen hadden overschreden. Deze vraag was zodanig
geformuleerd dat het in staat was om gebruik te maken van de REST architectuur van het web. De
opgehaalde resultaten werden vervolgens gebruikt om een virtuele RGB (rood-groen-blauw) toe te
wijzen aan de de IfcSpace elementen in het BIM- model van het Nationaal Militair Museum. De
kleur rood werd gebruikt voor kamers die niet voldeden aan de eis, terwijl de expositieruimtes die wel
voldeden aan de OS groen waren gekleurd.

Tenslotte kan worden gesteld dat de uitkomst van dit onderzoek inzicht biedt in het uitdrukken, het
integreren, het ophalen en opnieuw gebruiken van informatiestromen op een zinvolle manier door
middel van open standaarden. Op deze manier is de cliënt (en/ of de bewoners kunnen) in staat om
een gebouw aan te wenden die voldoet aan hun behoeften terwijl de aannemer in staat is om
effectiever het gebouw te beheren. Uiteindelijk heeft de ontwikkelde prototype in dit onderzoek
aangetoond dat door het gebruik van Semantisch Web-technologieën het mogelijk is, om de
interoperabiliteit tussen de verschillende disciplines in de bouw te verbeteren en daarmee en
daarmee de prestaties te vergroten van objecten binnen de bouwindustrie.

9

Table of contents

Preface ... 3

Summary .. 5

Samenvatting ... 7

1. Introduction ... 13

1.1 Background .. 13

1.2 Problem description ... 14

1.3 Research objective ... 15

1.4 Research questions .. 15

1.5 Thesis outline ... 15

2. Methodology ... 17

2.1 Methodological justification .. 17

2.2 Research model ... 18

3. Systems Engineering .. 21

3.1 Systems Engineering (SE) ... 21

3.2 The SE process ... 21

3.3 Data from SE .. 23

4. Facility Management ... 25

4.1 Facility Management (FM) ... 25

4.2 The FM process .. 25

4.3 Data from FM ... 26

5. Building Information Modeling .. 27

5.1 Building Information Modeling (BIM) .. 27

5.2 Industry Foundation Classes (IFC) .. 28

5.3 Level of Detail (LOD) .. 31

5.4 Information Delivery Manual (IDM) ... 31

5.5 Model View Definition (MVD) .. 32

5.6 buildingSMART Data Dictionary (bsDD) ... 32

5.7 Limitations of non- geometrical information exchange ... 32

6. Linked Data .. 35

6.1 The World Wide Web (WWW) ... 35

6.2 The Semantic Web and Linked Data .. 35

6.3. Semantic Web standards .. 37

6.3.1 RDF .. 37

6.3.2 RDFS .. 37

10

6.3.3 OWL .. 38

6.3.4 SPARQL ... 39

7. Project Analysis .. 41

7.1 Process analysis ... 41

7.2 Requirement analysis ... 42

7.3 Use Case .. 43

7.4 Application architecture .. 43

7.5 Descriptive data analysis .. 44

7.5.1 General data analysis .. 44

7.5.2 Data set analysis ... 45

8. Ontology Engineering .. 47

8.1 Sensor data .. 47

8.2 IFC- SPF data .. 50

8.3 SE data ... 52

9. Linked Data generation ... 55

9.1 Naming things with HTTP URIs ... 55

9.2 Describing things with RDF .. 55

9.2.1 IFC- SPF data ... 55

9.2.2 Tabular data .. 55

9.3. Making links to other data sets ... 57

10. Rule - based verification .. 59

10.1 SPARQL Query .. 59

10.2 REST Protocol ... 60

10.3 IFC Visualization ... 60

11. Conclusion & Discussion .. 61

11.1 Conclusion ... 61

11.2 Discussion .. 62

11.2.1 Relevance of the research .. 62

11.2.2 Future work .. 62

12 References .. 65

Appendix A Interview ISSO ... 69

Appendix B Interview Facilicom ... 71

Appendix C Interview Strukton (BIM department) .. 73

Appendix D Interview Ministry of Defense .. 75

Appendix E Interview Semmtech ... 77

Appendix F Interview Heijmans ... 79

11

Appendix G Interview Strukton (data management department) ... 81

Appendix H An IfcSpatialStructureElement decomposition ... 85

Appendix I The monitoring process within in a DBFMO- project ... 87

Appendix J Descriptive analysis of sensor temperature data ... 89

Appendix K SE information models .. 91

Appendix L A SE ontology .. 93

Appendix M A partial building RDF- graph ... 95

Appendix N Flowcharts for data transformation and conversion .. 97

Appendix O A script for sensor data transformation ... 99

Appendix P A script for SE data transformation ... 101

Appendix Q Partial tabular data transformation results .. 103

Appendix R JSON Linked Data for sensor data conversion... 105

Appendix S JSON Linked Data for SE data conversion .. 107

Appendix T A script for sensor data conversion ... 109

Appendix U A script for SE data conversion ... 113

Appendix V A partial sensor RDF- graph .. 117

Appendix W A partial SE RDF- graph .. 119

Appendix X A script for linking RDF graphs .. 121

Appendix Y A partial link RDF- graph .. 123

Appendix Z A script for a SPARQL rule & IFC visualization ... 125

12

13

1. Introduction

1.1 Background

The amount and diversity of information is one of the most essential characteristics of a building
project in the Architecture, Engineering and Construction (AEC) domain. Namely, while various domain
experts work on the same project each of them have their own understanding of the project and
deliver their own contribution by using its own software. Since the used information models are all
part of one and the same project, a lot of information flows occur between the various involved
parties of different disciplines. See figure 1A.

In order to resolve this issue the Building Information Modeling (BIM) approach is increasingly
becoming a standard within the AEC domain. This approach states that one central 3D building model
is used as a centralized information structure. See figure 1B. Then, all information is stored in this
central BIM model which can be accessed by diverse other applications in the AEC domain. Changes
made to the design are applied to and stored into the BIM model and allow them to be directly
available to other users.

Even though the BIM approach has shown various improvements it has been criticized within
academic as well as in corporate domains. Namely, it appears that the amount of non-geometric
information within the AEC domain –especially data from the operational phase - cannot be stored in
a central Building Information Model. These data sources (including the BIM) are usually stored locally
and are seldom connected with each other (Dankers, van Geel, & Segers, 2014). Furthermore, the
open data model where upon BIM relies (which is called the Industry Foundation Classes (IFC)) is by
itself not sufficient to enable interoperability with systems outside of the AEC domain (Curry et al.,
2013). In this context, interoperability should be seen as the ability of information systems to integrate
their information structures (or models) and “work together” effectively by means of information
flows. This is noticed by Pauwels as well who stated that it is currently not possible to rely on the
central information structure (IFC) for describing all building information (Pauwels, 2014).

As a result, the Linked Data strategy is increasingly getting attention within the AEC domain as one of
the most promising approaches to tackle the interoperability challenge. It does this by separating the
actual data from its authoring tools and relying on an data model in a linked open data structure
(Pauwels, 2014). See figure 1C. Representing building data as a Linked Data model, will allow it to be
combined easily with Linked Data from other relevant cross domain silos. In doing so, organizations

Fig. 1A The traditional approach of information
exchange within the AEC domain (Pauwels, 2014).

Fig. 1B The BIM approach of information exchange
within the AEC domain (Pauwels, 2014).

14

can share, reuse and therefore improve interoperability between current stand-alone repositories,
across multiple building domains. (Curry et al., 2013).

1.2 Problem description

Within the Dutch AEC domain government policies demand increasingly that Public-Private
Partnership projects, have to be implemented via integral contract types such as the Design, Build,
Finance, Maintenance and Operate (DBFMO)- contract (Verweij, 2015). Because the number of
DBFMO- projects of the Central Government Real Estate Agency (CGREA) in the operation &
maintenance (O&M) phase increases, efficient contract management is becoming more crucial in
checking if the actual building performance complies to the agreed output specifications (OS)
(Algemene Rekenkamer, 2013).
At the same time more heterogeneous non- geometric data is being produced in the O&M stage than
ever before. Examples are: indoor climate data, energy usage, utility information, occupancy patterns,
weather data, scheduling software, financial control etc. Often there is little interaction between these
sensor data silos. However, the reuse and integration of cross- domain performance sensor data is
seen as essential to understand the performance and optimize the operation of the building to ensure
it is meeting the requirements of the organization/occupants (Curry et al., 2013).

In short, building owners require more from their assets while the need to synchronize heterogeneous
data sources become more prevalent. Yet literature states that Facility Management (FM) is still in its
infancy in its adoption to advanced information models like BIM which hampers (automated)
integration and reuse of data sets coming from other disciplines. For example, BIM- tools for the O&M
phase have only recently become available on the market (C. e Eastman et al., 2011).
This has been stated as well by various parties (i.e. ISSO, Facilicom and Strukton) during conducted
interviews. See appendices A, B and C. Facilicom stated that they use a so called Facility Management
Information Model which they have to build up from scratch again. They also have to fill up the
Building Performance System (BPS) manually. Also a data manager of Strukton mentioned that non-
geometric information in Excel has to be merged manually (specifically: retyping or copy/pasting)
because every data source is stored in its own rigid tabular structure. In another interview (Appendix
D) a facility manager of The Ministry of Defense stated that data silos (created by the BPS) were not
synchronized automatically while data sets were sometimes even distributed per mail. Therefore, he
was not able to analyze relevant cross- domain data in order to gain a more elaborated overview of
the building and improve his decision making to meet certain objectives. Finally, research shows that if

Fig. 1C The Linked Data approach of information exchange within the AEC domain (Pauwels,
2014).

15

BIM is used anyway, the utilization in the operational phase is currently limited to the use as a static
repository of information concerning building entities (Pauwels, 2014).

1.3 Research objective

So given (1) the need of an open information model which can enhance interoperability between
various (non-) geometric data sources within the O&M phase and (2) the possibilities of Linked Data it
seems beneficial to study the added value of Semantic Web technology within a DBFMO- project.
Therefore, the objective of this research is to interlink non- geometric data sets produced by different
disciplines to a BIM- model by using the Linked Data approach in order to perform performance
assessments upon a building. The scope of this research will thereby be restricted to a provided use
case by Semmtech. Therefore, in this report a focus will be put upon the building domains Systems
Engineering (SE) within the design phase and Facility Management (FM) within the operations &
maintenance stage.

1.4 Research questions

Based upon the mentioned objective and limitations in section 1.4 a main research question is
formulated as follows:

“In which way could linked sensor data be integrated into a BIM model to check the
performance of its associated building based upon the agreed specifications during the

operations & maintenance phase?”

The 6 sub questions that support answering the research question are formulated as:

1. What is Systems Engineering and Facility Management and to which extent do they relate to each
other?

2. What is BIM and to what extent facilitates it information exchange between SE and FM at the
moment?

3. In what way is it possible to improve information exchange by using Semantic Web technologies?
4. In which way could Linked Data sets be generated and aligned together?
5. How to develop a rule-based mechanism which is able to determine to which extent the output

specifications are met?
6. In which way is it possible to visualize the results of the verification within in a building model?

1.5 Thesis outline

The structure of this report could be described in 10 steps. Firstly, a research method is explained that

will be used throughout the project. Thereafter, the AEC domains Systems Engineering (SE) and

Facility Management (FM) will be examined in how they relate to each other in part 3 and part 4.

Thereby, a main focus is put in the structure of the data (or information) that is generally being

produced during these buiding phases. Chapter 5 revolve around the BIM approach and how it

facilitates information flows between these building domains at the moment while chapter 6 explores

how Linked Data is able to improve the current state. Then, an actual use case will be obtained of

which several data sets (produced by SE and FM) will be analyzed in chapter 7. The purpose of part 8

and part 9 is to structure and convert the analyzed data sets into Linked Data and connect (integrate)

them together as one cohesive information model. Chapter 10 will then show how the rooms of a

building model can be checked based upon the developed information model and how to visualize the

results. Finally, this report will be ended by means of a conclusion and a discussion in chapter 11.

16

17

2. Methodology

The goal of this chapter is to set up an adequate research model. Therefore, literature study is
conducted first which provides the means to design a structure which is able to elaborate upon the
mentioned sub questions and thereby enable a comprehensive answer to the main question.

2.1 Methodological justification

Curry et al. proposed during their research a process to develop a semantic energy
management application. This application could query data models that consisted of IFC data
enriched by energy related data (Curry et al., 2013). This research model resembles greatly that of
Nikman & Karshenas: In their study a BIM knowledge base was created from cross-domain data silos in
order to develop an energy analysis application (Niknam & Karshenas, 2015). In conclusion they both
identified the steps from obtaining unstructured energy related data and storing transformed Linked
Data (of which its data format is called Resource Description Framework (RDF)) in adequate triple
stores (which is a specific RDF database). They also noticed that a specific language was necessary to
query this triple store. Because of the resemblance between his research and theirs, both
methodologies are used as an overarching structure.

Radulovic et al. elaborated extensively the steps from obtaining raw data to a RDF transformation. The
study stated that the generation of Linked Data in the AEC domain is still in its infancy. In order to
stimulate a quicker adoption they developed (based upon the general rules to generate Linked Data) a
set of specific guidelines to generate Linked Data related to energy consumption of buildings
(Radulovic et al., 2015). Figure 2A shows the steps the team took to accomplish this.

Fig. 2A A guide for a Linked Data generation process (Radulovic et al., 2015).

Figure 2A also shows that an ontology has to be developed first before the actual RDF translation can
take place. However, it appears that this is an extensive process for which no single correct ontology
engineering methodology exists. Namely, the “correctness” of an ontology depends on the usage by
the application. It is therefore essential to start with a general template on which (when necessary) a
more specific development vocabulary can be built upon. This general method is provided by Noy et
al. who developed a ontology engineering guide called: Ontology Development 101. Their proposed
methodology consist of

18

(1) determination of the domain and scope of the ontology (2) reuse of existing ontologies (3)
list of important terms in the ontology (4) definition of classes and its hierarchy (5) definition
of slots (6) definition of facets of slots (7) Creation of instances (Noy & McGuinness, 2001).
Finally, in order to develop semantic tooling efficiently an adequate method is required.
Davis provided a general and common approach in the software development domain to
program an application. These steps can be enumerated as follows: (1) setup requirements
(2) design (3) coding (4) testing like unit tests, acceptance test etc. (Davis, 1993). See figure 3.

Requirements Design Implementation
Testing

(i.e. unit tes ts, acceptance

test)

Fig. 2B A generic development approach within the Information Technology domain (Davis, 1993).

2.2 Research model

The research model is developed by combining the specific research questions with the
general foundation as described in 3.1. Figure 2C shows the final model. Basically, the sub research
questions determine the sequence of the phases, while the methodologies mentioned above provide
efficient guidelines to answer them.

First, literature study will be conducted to gain insight in the aforementioned interoperability problem
within the operations & maintenance phase. Hereby, concepts as Systems Engineering (SE), Facility
Management (FM), Building Information Modeling (BIM) and Linked Data will be elaborated
respectively. Thereafter, the verification process within a DBFMO- context is analyzed by using
Business Process Modeling Notation (BPMN). In this way it is possible to capture the necessary
requirements via the Unified Modeling Notation (UML) and define the scope of the research based
upon the MoSCoW method which is followed by an ordinary Initial Data Analysis (IDA) of three data
sets from a real world use case. Hereafer the actual Linked Data sets are generated by (where
necessary) following best practices of i.e. Radulovic et al and Noy et al. When the Linked Data sets are
mapped together and stored in a so called triplestore, a verification mechanism will be developed in
order to determine the performance of the building. Finally a Linked Data tool is going to be built in
order to visualize the results. Several validations will be performed to keep the future results aligned
with the research goal during the process.

19

Project analyis

Output
specifications

BIM model

Phase 2

Sensor data

Phase 1

Phase 3

SE

Process Analysis

Ontology Engineering
(according to the guidelines

by Noy & McGuinness)

Linked Data generation
(according to the guidelines

by Radulovic et al)

Development of a
verification mechanism

Visualization of the
verification results

Phase 4

FM

BIM

Linked Data

Literature study

Validation

Validation

Fig. 2C An high level view of the overall process of this research project.

20

21

3. Systems Engineering

The goal of this chapter is to examine the domain of Systems Engineering (SE). Firstly, the meaning of
the term will be explored. Subsequently, the core activities, approaches and standardization efforts
are elaborated. Thereby a description is provided about the data that is being produced during the
processes. In regard to this research, this part provides an brief explanation about how this domain
correlates with the FM domain during a DBFMO project.

3.1 Systems Engineering (SE)

It appears to be hard to find a single definition of SE because the existing literature provides multiple
interpretations of the term. Though, the most widely accepted explanation is provided by the
International Council on Systems Engineering (INCOSE): “Systems Engineering is an interdisciplinary
approach and means to enable the realization of successful systems. SE considers both the business
and the technical needs of all customers with the goal of providing a quality product that meets the
user needs” (INCOSE, 2006).

Basically, a system can be seen as an integrated composite of people, products, and processes that
provide a capability to satisfy a stated need or objective (Freeman, 2015). Systems can be grouped
together as well in order to create more complex systems. See figure 3A for an example of such an
overall system. Furthermore, the figure illustrates the decomposition of abstract systems into more
concrete subsystems as well. In such situations these systems can be interpreted as system elements
(also subsystems) in an overarching and hierarchical system. Examples are a so called System Of
Systems or Federation of Systems. (BKCASE Editorial Board, 2014).

Air transport
system

Rail transport
system

Road transport
system

Water transport
System

Transport systems

Traffic system Train system Station system Energy system

Rail transport system

Maintenance
systeem

Rail network
system

Is decomposed by

Fig. 3A An example of a System Of Systems (Based upon: Werkgroep Leidraad Systems Engineering et al., 2013).

3.2 The SE process

Key activities of SE processes are the decomposition of a system (as mentioned in part 3.1) and
associated verification which provide jointly a holistic overview of a project (Douglass, 2016). A system
can be decomposed in basically three breakdown structures (Werkgroep Leidraad Systems
Engineering et al., 2013):

1. A Requirements Breakdown Structure (RBS) which form an hierarchy of requirements of a system;
2. A Functional Breakdown Structure (FBS) which specifies every function that must be addressed by

a certain system;
3. The System Breakdown Structure (SBS) is a hierarchy of system elements, related life cycle

processes and stakeholders.

These breakdown structures are related to each other as follows. Based upon the RBS, systems can be
designed (according to the SBS), which has to fulfill certain functions which are specified within the

22

FBS. Throughout this iterative process, verification is imposed to check whether or not the functioning
of a product, service, or system complies with a specification. Figure 3B illustrates this process.

Fig. 3B A overview of the SE key activities (INCOSE, 2006).

Literature show that there are different approaches for executing these SE key tasks . The most
common procedure (which is the facto standard as well) is the sequential V- approach. See figure 3C.
The V- model highlights the need to define verification plans during requirements
development, the need for continuous validation with the stakeholders, and the importance
of continuous risk and opportunity assessment (Haskins, 2006).This is illustrated in the rigid distinction
between the left and right side of the model. Hereby, the left side of the “V” illustrates the top- down
decomposition process in subsystems (i.e. a building story). The right leg of the “V” represents the
bottom- up process of implementation and verification of system components to the system level
(INCOSE, 2006). A relevant example, is the RBS of which can be used to verify the intended operational
use and ensure adequate maintenance during its life cycle (Ryen, 2008).

Fig. 3C The position of the operational building phase at the right wing of the V- model (Ryen, 2008)

The other extreme is the (agile) incremental approach. Within this approach SE and associated
engineering disciplines deliver their products within short iterative intervals. This means that
relatively small slices of the desired functionality of systems are being specified, implemented and
verified before focusing on the other aspects of the performance of the functionality by the system.
However, it appear that this method cannot be applied within the AEC domain because of the typical

23

long lead times to create physical products (Douglass, 2016). Because each approach has its own
(dis)advantages and each actual project is different in essence, several hybrid solutions has been
developed during the last decade. (Freeman, 2015).

The execution of SE activities according to these approaches via a collection of terminology, tools and
associated techniques have been standardized during the years. It appears that in 1969 the DOD was
the first standard which was used to manage the military programs of the United States of America
(USA). During the following years, a variety of SE standards have been developed from an increasingly
commercial perspective. The three SE standards which are now commonly used are (Locatelli,
Mancini, & Romano, 2014) :

1. ANSI/EIA-632 (2003) focuses on the early stages of a system's life cycle. It mainly describes SE
“processes” and their relationships for the actual implementation.

2. IEEE (2005) focuses mainly on the “development stage” of a generic system. In general, IEEE
(2005) provides also the most detailed SE processes.

3. ISO/IEC 15288:2008 (2008) provides a generic perspective of the entire life cycle of a system
and describes SE processes via the highest level of abstraction.

3.3 Data from SE

The core products that serve as input for supporting the tasks by Facility Management are the system
requirements themselves, an operations & maintenance plan and performance data (Ryen, 2008).
Within conventional SE processes, all of these engineering data are represented either as textual
specifications or occasionally as schematic drawings.

However, in the last 20 years, descriptive models have been introduced as a better way of creating,
managing, and verifying engineering data than textual specifications (BKCASE Editorial Board, 2014).
INCOSE defines this type of practice as Model Based Systems Engineering (MBSE) which holds the
following definition: “The formalized application of modeling to support system requirements, design,
analysis, verification, and validation activities” (INCOSE, 2007).

Thereby, the use of formal standards for creating models and defining data exchanges is seen as an
important enabler for integrating and reusing data during SE processes. Identified examples of such
modeling languages are the Unified Modeling Language (UML) and the Web Ontology Language
(OWL). Standardized data exchanges are possible thanks to widely adopted data models like the
Extensible Mark-Up Language (XML) and the Resource Description Framework (RDF) (BKCASE Editorial
Board, 2014).

24

25

4. Facility Management

The purpose of this part is to explore the domain of Facility Management (FM). Firstly, a definition will
be provided which will be used throughout this research. Furthermore, the core activities and
approaches are mentioned. Thereby an extensive explanation is provided about the data that is being
produced by the FM processes. For the sake of this research, the chapter explains how this domain is
interlinked with the SE domain during the building life cycle (from the perspective of this research).

4.1 Facility Management (FM)

The domain of FM is defined in various ways as well. From the context of this research though,
the explanation by the International Facility Management Association (IFMA) can be used: “A
method whose task in organizations is to mutually harmonize employees, work activities and
the work environment that includes principles of business administration, architecture and
humanities and technical sciences” (Potkany, Vetrakova, & Babiakova, 2015). More concretely:
Building’s operations & maintenance (O&M) includes all services required to assure the built
environment will perform according to the functions for which a building was designed and
constructed (WBDG, 2015). In addition, the goal of FM has increasingly been commercialized
like the (economic) maximization of building functions while (still) ensuring occupants
wellbeing (Dawood, Vukovic, & Kassem, 2015).

4.2 The FM process

Though, FM plays a key role in the operation of an organization, it could be incorporated during other
phases of a building life cycle as well (Mrackova, E., Hitka, M., Sedmak, R. 2014). In general, an ideal
approach is if the role of FM is implemented already in activities during the initial phases of a building
life cycle, such as Systems Engineering. Such an approach has multiple advantages, like reducing
investment and operational costs (Miske, 2010). Figure 3F shows the diverse responsibilities of FM
during these stages.

Fig. 4A An overview of the activities by FM (Potkany et al., 2015).

The operational activities by the FM discipline can be grouped in two major categories. The first
category relates to making sure that the operation of the facility complies with certain specifications
(according to the RBS) and regulations (i.e. NEN 2767). The second group of functions is mainly
focused upon conditioning and maintenance of the building components. Because of the context of
this research a focus has been put upon the first category.

26

4.3 Data from FM
In order to comply to the specified requirements by SE, extensive sensor data and information from
various fields and disciplines is necessary (as already stated in 1. Introduction). In general, such
building operational information consist of the following four data types: (Moon, Kim, & Choi, 2013):

1. Monitoring data which refers to the information measured that relates to building energy.
This data includes information about building operation schedule, indoor climate, occupancy
etc.
2. Forecasting data which contains the predicted information about weather and occupancy.
This data is used to condition the building environment during future periods.
3. Control data which pertains to the information about the building control signals.
4. Simulation data which includes the results from simulation programs. It can be used to
calibrate the simulation model and can be used for building control based upon simulations.

Traditionally, this FM sensor data and information are organized and maintained as data points in
dispersed information systems such as Computerized Maintenance Management Systems (CMMS),
Electronic Document Management Systems (EDMS), Building Automation Systems (BAS), etc.

Such data points seem to have different definitions across the literature. However, they all describe
them as an addressable point of interaction between the control system and its domain object (i.e.
indoor climate). Every data point has usually the following metadata associated with it (Domingues,
Carreira, Vieira, & Kastner, 2016):

1. Access type: Data points usually offer one of the three access types: read, write or both.
Readable data points are read-only and usually relate to sensor devices. Writable data points
are write-only and relate to updating the system's state.

2. Datatype: In addition, the datatype tells applications how the information is structured
when they read from a data point and how it must be structured when writing to that data
point. Moreover, datatypes can have semantic information associated with them, usually
represented by a unit. For instance, a data point's value can represent a room temperature in
Celsius.

3. Installed location (and influence zone): Knowing the installed location of a data point is
essential, especially if that data point belongs to a sensor device. Besides, data points also
have a zone of influence which may not be the same as the installed location. For example, a
heating, ventilating, and air conditioning system (HVAC) usually occupies one room in the
building and affects several other rooms.

4. Value update rate for reading and writing operations: Data points that provide a read-access
type should ensure a regular value update rate which is known as smallest sampling (time)
interval. On the other hand, data points that support writing operations may provide a
maximum rate at which writings can be performed.

27

5. Building Information Modeling

The purpose of this part is to explore the centralized Building Information Model(ing) (BIM) approach
within the AEC domain. Currently, (the origin of) this phenomenon and its associated benefits has
already been extensively investigated by various literature in multiple domains (C. Eastman et al.,
2011; Bryde, Broquetas, & Volm, 2013). This chapter therefore starts directly with providing a
technical definition of BIM based upon existing literature. Then, the essential BIM processes that
enable interoperability will be described in 4 successive chapters. See figure 5A for a generic overview.
This description is limited to the leading open data standard Industry Foundation Classes (IFC), even
though the BIM approach is supported by various other open XML- based standards like gbXML,
ifcXML, BCF and CityGML as well. Due to the context of this research, a focus is put on the exchange of
non- geometric BIM information between stakeholders of the design phase and operations phase and
associated limitations.

Fig. 5A A holistic view of the essential BIM processes (Volk, Stengel, & Schultmann, 2014).

5.1 Building Information Modeling (BIM)

As already depicted in chapter 1, one of the latest approaches which is embraced within the global
AEC domain is the BIM approach whereby one central 3D building model is used as a centralized
information structure. Since all information is stored within a central BIM model, it can be accessed by
various construction- related applications (i.e. Revit Architecture, Solibri, Relatics) of different
stakeholders. In this way, all parties can use the available information during the building life cycle
(Pauwels, 2014).

BuildingSMART, a neutral organization that plays a key role in the worldwide implementation of BIM in
the AEC industry, defines BIM as a “shared digital representation of physical and functional
characteristics of a facility founded upon open standards for interoperability.” This product model
could then be employed for decision-making throughout the lifecycles of buildings. The ultimate goal
is to enhance “collaboration by different stakeholders at different phases of the life cycle of a facility
to insert, extract, update or modify information in the process to support and reflect the roles of that
stakeholder” (International Alliance of Interoperability (IAI), 2007).

In this context, a product model can be seen as a formal information model that complies to agreed
data structures. Therefore, it is possible to structure engineering information about construction
elements in so called classes (Watson, 2011). Hereby a class can be defined as a (standardized)
template or set of instructions to build a specific type of object (International Alliance of
Interoperability (IAI), 2007).

28

Classes may have geometric or non-geometric attributes with functional, semantic or topologic
information. For example, functional attributes can be installation durations or costs. Semantic
attributes hold attribute such as connectivity, containment, aggregation or intersection while
topologic attributes provide e.g. information about objects' locations, adjacency or perpendicularity.
(C. e Eastman et al., 2011).

Such classes then allow the creation of any number of object instances, with forms that vary,
depending on the determined parameters and relationships with other objects. This object- oriented
approach enables users to develop their own information objects like a wall, slab, or roof and even
develop object libraries for specific purposes (Volk et al., 2014).

5.2 Industry Foundation Classes (IFC)

ISO 10303 is a comprehensive ISO standard for the computer interpretable representation and
exchange of (the previously mentioned) product models. The standard is often referred to as the STEP
(Standard for the Exchange of Product model data) Standard. The STEP standard is divided into
different parts, namely: Description Methods , Information Models, Application Protocols,
Implementation Methods, and Conformance Tools. See figure 5B.

Fig. 5B An high level overview of the ISO 10303 standard (Loffredo, 1999).

Hereby the EXPRESS language (ISO 10303-11) is the main Description Method of STEP and should be
seen as a standard data modeling language for data. The EXPRESS language can be considered as
technology independent and consists of language elements which allow an explicit data definition. In
EXPRESS, a number of declarations can be made, specifically: TYPE, ENTITY, SCHEMA, CONSTANT,
FUNCTION, PROCEDURE (WHERE) RULE. The open IFC schema is built upon various IFC- classes (e.g.
IfcBuilding, IfcSpace) that are specified by this EXPRESS data definition language. At the moment there
are several available IFC EXPRESS schemas, including the most well-known IFC2X3.exp.

https://en.wikipedia.org/wiki/Data_modeling
https://en.wikipedia.org/wiki/Modeling_language

29

Fig. 5C A high level visualization of the IFC architecture (BuildingSMART, n.d.).

IFC schemas are structured according to a so called IFC Object Model architecture which provides a
modular structure for its IFC classes. In essence, this structure can be conceptualized in four
hierarchical layers. See figure 5C. Within each conceptual layer a set of model schemas are defined.
The base layer provides Resource elements. The second overlay (the kernel layer) groups the Kernel
and several Core Extensions. The third conceptual layer (which is called the interoperability layer)
provides a set of modules defining concepts or objects common across multiple application types
within the AEC domain. Finally, the fourth and highest layer in the IFC Object Model is the
Domain/Applications Layer: It provides a set of modules tailored for specific AEC industry domain or
application types.

Each schema groups a (hierarchical) set of entities. For example, IfcSpace lies within the
ProductExtension schema and is related to the breakdown structure of
IfcSpatialStructureElement. Namely, this class structures IfcSpace along with the following
entities: IfcProject, IfcSite, IfcBulilding and IfcBuildingStorey. Herefore the
decomposition relationship IfcRelAggreagates is used to link the (instances of the) classes. See
Appendix H. IfcSpatialStructureElement is considered to be the primary decomposition of a
project model into manageable spatial subsets and is essential for data exchanges (Liebich, 2009).

30

The IFC architecture operates on a 'ladder principle'. At any layer, a class may reference (i.e. inherit
attributes) from a class at the same or lower layer but may not reference a class from a higher layer
(Borgo, Sanfilippo, Aleksandra, & Terkaj, 2015). This essential aspect is illustrated by elaborating the
IFC data model in detail by using the IfcSpace- class. The EXPRESS definition of an Ifc2x3Space is:

ENTITY IfcSpace

SUBTYPE OF (IfcSpatialStructureElement);

InteriorOrExteriorSpace: IfcInternalOrExternalEnum;

ElevationWithFlooring: OPTIONAL IfcLengthMeasure;

INVERSE

HasCoverings: SET OF IfcRelCoversSpaces FOR RelatedSpace;

BoundedBy: SET OF IfcRelSpaceBoundary FOR RelatingSpace;

END_ENTITY;

From this specification it is possible to see that the IfcSpace entity references to a Enumeration
Data Type called IfcInternalOrExternalEnum and could be referenced from a
IfcRelCoversSpaces class.

The IfcSpace- class could also be visualized by using EXPRESS-G. EXPRESS-G should be seen as a
graphical modeling notation developed within SO 10303 and is used for IFC definitions as well. See
figure 5E for an Ifc2X3Space- class in EXPRESS-G. Using this language users can draw classes, attributes
of classes and the relationships that exist between classes. For example, the solid line from IfcSpace
to IfcInternalOrExternal means that the attribute has to be defined in order to create an
IfcSpace object.

ifcSpaceIfcObjectPlacement

IfcLengthMeasure

ElevationWithFlooring

IfcObjectPlacement
HasCoveringsBoundedBy

IfcInternalOrExternalEnum

InteriorOrExteriorSpace

Fig. 5E An 2X3IfcSpace in EXPRESS-G (based upon: buildingSMART, n.d.).

An actual IfcSpace- object (the actual product model) can be exchanged via data files (.spf or .p21-
files). These data files are clear text files following the so called STEP physical file format (ISO 10303-
21). The Part 21 provides specifications to order EXPRESS-defined data so exchange between
databases and CAD systems can take place. Examples are that a data file should have a “header”-
section and a “data”- section or that each class instance should be represented in one line. IFC- SPF is
a data model text format following this STEP- protocol while having the file extension ".ifc". Though
other formats exist like IFCXML, this is the most widely used IFC exchange format. Below an example is
provides of an STEP- specified Ifc2X3Space- object:

#191= IFCSPACE('0x2ZPKRKH3UgcA5UXfu_mq',#41,'1',$,$,#159,#187,

'EXAMPLE',.ELEMENT.,.INTERNAL.,$);

As is shown above, an IfcSpace- class (with local identifier #191) is constructed whereby the
attributes between the brackets are its parameters. An “$” means that a parameter is not specified
while e.g. #41 refers to a class on line 41 in the IFC- SPF file. The IfcSpace- entity consist of more
parameters then is specified in its EXPRESS definition, because an IFC class is able to inherit attributes

31

from classes in other layers according to the ladder-principle. For instance, the first parameter which
represents a Global Unique Identifier (GUID) is inherited from the class IfcRoot that resides in the
Kernel schema (which is one layer lower than IfcProductExtension). All classes or attributes
which a class is able to reference to or is referenced from are defined in its associated Inheritance
Graph1.

The most recent version Ifc2x4 has about 800 entities (data objects), 358 property sets, and 121 data
types (C. e Eastman et al., 2011).

5.3 Level of Detail (LOD)

During the life cycle of buildings various design, engineering, construction, maintenance and
deconstruction functionalities (i.e. class detection or quantity takeoff) and potential applications (i.e.
Solibri) require each a different capability of BIM (C. e Eastman et al., 2011).

These functionalities are usually inherent to either 3D, 4D or 5D BIM. 4D is achieved by linking the
functional time attribute to building elements and space objects of the 3D-model. Then time
parameters may describe e.g. the installation date and time of building elements. 5D BIM is
accomplished by adding the cost dimension (specifically stated: adding cost attributes for particular
times during the building lifecycle). This allow expert systems to use these underlying BIM data to
support, extend, calculate or simulate specific cost analyses (International Alliance of Interoperability
(IAI), 2007).

Furthermore, the degree of information needed by each functionality (and thus stakeholder) is
different and require each a certain accuracy, type, information richness and timeliness of the
underlying data to fulfill their purposes. This degree of BIM is called Level Of Detail (LOD). It defines
geometric and non-geometric attribute information provided by a model component, often
referenced to a point of time, building lifecycle stage or to a contractual responsibility (C. e Eastman et
al., 2011).

Usually the required LOD by the functionalities are based upon process maps called Information
Delivery Manuals (IDM). Such maps describe the logical flow of activities and the deriving information
as well as the involved parties delivering specific functionalities (Volk et al., 2014).

5.4 Information Delivery Manual (IDM)

The Information Delivery Manual (IDM; ISO 2010a) should be considered as a business process
modeling language. The main goal of IDM is to document information that needs to be exchanged to
perform a task in a process (BuildingSMART, 2010).

As a product, the IDM extends Business Process Modeling Notation (BPMN). Thereby IDM focusses on
in-depth descriptions of information elements (such as classes and attributes) and their exchange
through object- oriented models. The IDM framework defines the functionality-related exchange of
process information in BIM through process maps, interaction maps and the associated Exchange
Requirement Model (ERM). The process maps describe the order of undertaken activities within a
particular topic, the actors' roles and required, created and consumed information. The goal of
interaction maps is to define roles and transactions for a specific purpose or functionality (P. C. M.
Eastman, Tech, Ga, & Eastman, 2011). The ERM can be seen as a technical solution which defines a

1 See: http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcproductextension/lexical/ifcspace.htm.

http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcproductextension/lexical/ifcspace.htm

32

“set of information that needs to be exchanged to support a particular business requirement” or
functionality and correlates with the so called Model View Definition (MVD).

5.5 Model View Definition (MVD)

MVD definitions depends upon the required functionality (defined in the IDM) and the referred BIM
information objects and associated attributes. Therefore, an IFC-based MVD is a model subset of an
IFC schema- instance with respect to the requirements from end users of the desired functionality
(Zhang, Beetz, & Vries, 2013). This means, that a MVD is able to structure relevant information to
improve efficient information flow between stakeholders in building-related processes such as energy
analysis or quantity takeoff.

For maintenance functionalities, Construction-Operations Building Information Exchange (COBie) is
the predominant open standard MVD to exchange non- geometrical data such as contact and general
facility information (i.e. attributes) about spaces, zones, floors, components etc. (Volk et al., 2014).

So COBie can be considered as a performance-based specification for facility asset information
delivery. Two core types of assets are included in COBie: equipment and spaces. It aims to help the
diverse project team (like SE) to organize its approved engineering data during design and
construction and deliver an electronic O&M manual (including an as-built BIM) with little or no
additional effort. For example, the standard is able to capture SE data for rooms in so called room data
sheets: These sheets include non- geometrical information about the room including its name,
acoustics, ventilation and environmental conditions. This COBie data may then be imported directly
into information systems like Computerized Maintenance Management Systems (CMMS) as
mentioned in section 4.3 (WBDG, n.d.).

COBie data is available in two main formats depending upon the user and building stage. Namely,
information exchanges between machines during the design process are likely to use the ISO- SPF files.
For human reading it is possible to translate the engineering data into a spreadsheet (i.e. Excel).

5.6 buildingSMART Data Dictionary (bsDD)

The buildingSMART Data Dictionary (bsDDISO 12006-3) is an open, shared object-oriented database
where the terminology about the BIM objects is defined. It is considered as a library where terms and
associated meanings are described (Bell el al. 2008). There are two types of information within this
dictionary. Firstly, the naming of classes are defined in the different languages so that they are can be
understood by people from different nationalities. Hereby each term is given a unique number: A
Globally Unique Identifier (GUID). This number makes it possible for anyone to identify objects that
are named in a foreign language. Secondly, characteristics are assigned to each concept. These
characteristics can for example describe the length and width of the object or its function
(BuildingSMART, 2009).

5.7 Limitations of non- geometrical information exchange

As already have been mentioned within chapter 1, a central BIM approach has been criticized within
academic as well as in corporate domains. Even by using the MVD’s as described in section 5.4 to
avoid an huge and complex information model, issues in respect to especially non- geometric data
exchange occur. Namely, the BIM approach prescribes to share and reuse such data sets by applying
the COBie methodology. However, the semi- structured formats in which the COBie data is exchanged
(in STEP and common spreadsheet templates) raises issues related to semantic heterogeneity and
interoperability (Kapourani et al., 2015).

33

In the first case, semantic heterogeneity occurs whenever there is more than one way to structure an
information model. Thereby Beetz especially stresses the lack of formalism of the EXPRESS modeling
languages. In the second case, interoperability issues exist partly because of the complex nature of the
EXPRESS modeling language. In example, outside of the few engineering domains that use EXPRESS,
the popularity among developers, the use of this particular family of modeling languages and the
existence of (affordable or free) tools is very limited (Beetz, 2009). In regard to tabular data,
spreadsheet were meant in the first place a way for read and manipulate data by humans easily and
not a way to integrate data structures with (between machines). Furthermore, it appears that both
data structures do not provide the means to provide meaningful answers to sophisticated queries
(Kapourani et al., 2015).
A last promising approach in the AEC domain to tackle above mentioned problems is called Linked
Data which is initiated by the W3C. The fundamental concept of Linked Data is that data is expressed
according to an open information model in a formal way with the mindset that it will be shared and
reused by other information systems (in different domains). It is based on so called Semantic Web
technologies for representing, sharing, and querying structural data on the Web (Curry et al., 2013). In
general, it uses the Web Ontology Language (OWL), Resource Description Framework (RDF), and
Uniform Resource Identifiers which contrasts with respectively EXPRESS, STEP Physical File and GUIDs
(Törmä, 2013). Therefore, in the next chapter an elaborated view of the Semantic Web and Linked
Data will be provided.

34

35

6. Linked Data

As is found in chapter 5, it appears there is a need to integrate data in a semantic way which are
fundamentally different produced and used. Therefore, the purpose of this part is to explore the field
of the Semantic Web which was initiated by the W3C as a means of a solution. Since this technology is
still in its infancy within the AEC domain, a brief examination of its origin will be provided. Secondly,
the Semantic Web and its core concept called Linked Data will be defined concisely. Finally, an
elaborated explanation will be given about how Linked Data could be generated, be linked and be
used within the context of this research.

6.1 The World Wide Web (WWW)

Currently, the World Wide Web (the Internet) is made up of servers and clients. Clients have access to
information that the servers provide via Hypertext Transfer Protocol (HTTP). In most cases the
information is stored as web pages written in the HyperText Markup Language (HTML) language. The
most important feature of HTML documents is that they contain links which form the basis of the
complex structures of references. The actual meaning of the information it carries is normally
provided by associating meta- data to it. Generally speaking, metadata can be seen as pieces of
information about other data (Szeredi, Lukácsy, & Benko, 2014).

To support computer processing, meta-information is usually stored in the (Extensible Markup
Language) XML language. An XML document is a text file designed to be capable of storing and
exchange data in a structured form that conform to a specific syntax. However, when it comes to
semantic interoperability, XML has disadvantages. Namely, the current Web revolves around the fact
that anyone can create any type of content about any topic (this feature of the Web is also called the
AAA- slogan) and finally publish it to the Web infrastructure. XML only aims at the syntactic structure
of documents and does not enforce any common interpretation. Therefore, XML is not suitable for the
long run for supporting information exchange between internet- related applications (i.e. a client and
server) (Decker et al., 2000).

6.2 The Semantic Web and Linked Data

The vision of the Semantic Web is to extend the principles of the Web from documents to data
allowing to create a web of open interlinked data sets which are created independently from each
other. It can therefore be considered as an extension of the current web in which information is given
well-defined meaning, better enabling computers and people to work in cooperation. In this way the
Semantic Web provides a common framework that allows data to be shared and reused across
application, enterprise, and community boundaries.

Fig. 6A A visualization of the Linked Open Data cloud on the Semantic Web (Curry et al., 2013)

36

The basic idea of the Semantic Web is to enable
semantics by associating the published web
contents with meta-information in a
standardized form, making it possible to link
data sets together. See figure 6A. This metadata
is based upon an abstract data model called
Resource Description Framework (RDF) which
can be extended by various other web
languages. This mix of technologies forms the so
called Semantic Web stack. See figure 6B.
Standardized languages enable links to be set
between terms in different data sources and
therefore connect these sources. This is the
essence of Linked Data. Basically, the Linked
Data term refers to a set of best practices for

publishing and interlinking structured data on the Web which are called Linked Data principles. These
principles are the following (Heath & Bizer, 2011):

1. Use URIs as an identifier for things.

A Uniform Resource Identifier (URI) is a string of characters used to identify a thing in the real
world (also referred to as resource or concept). Therefore, such a URI has basically the same
function as a GUID in an IFC- SPF model. Examples could be very concrete like a building or a wall
but can represent also abstract concepts like a relation or a group of rooms. The first Linked Data
principle advocates the use of URI references to uniquely identify resources in a data set.

2. Use URIs according the HTTP standard

HTTP URIs enables the URI to be globally unique together with a simple, well-understood retrieval
mechanism. In this way people over the whole world are able to use URIs to identify things which
then can be dereferenced (to access the concept to which the URI points) over the HTTP protocol
into a description of the identified object or concept. The way to construct HTTP URIs is described
extensively by best practices called “Cool URIs” by the W3C.

3. Provide useful RDF metadata

The third Linked Data principle advocates the use of the standardized languages from the on the
Semantic Web Stack for publishing structured data (i.e. RDF).

4. Include links to other data sets

The fourth and most essential Linked Data principle promotes the use of hyperlinks (outgoing
links) to connect concepts in other data sets.

When publishing Linked Data on the Web, data is represented using the generic RDF data model.
However, RDF does not provide any domain-specific terms for describing formal hierarchies of things
in the world and how they relate to each other. This function is served by taxonomies, vocabularies
and ontologies expressed in SKOS (Simple Knowledge Organization System) RDFS (the RDF Vocabulary
Description Language, also known as RDF Schema) and OWL (the Web Ontology Language). In a
Linked Data context, it is often sufficient to express vocabularies in RDFS and certain primitives from
OWL. So, besides RDF only RDFS and OWL will be elaborated in the following paragraphs.

Fig. 6B The Semantic Web stack (Pauwels, 2011)

37

6.3. Semantic Web standards

6.3.1 RDF

Essentially, the purpose of RDF is to connect URI-identified real world entities with other resources or
just with plain literals (attributes of resource) by using properties. This allows RDF statements to act as
so called triples which consist of a subject, a predicate and an object. Hereby, the subject denotes the
resource, and the predicate (also called as property) denotes attributes of the resource and
represents a relationship between the subject and the object. In this way, multiple triples together
form a graph. Thus, such a RDF data model generally resembles the function of the STEP Physical File
in an IFC- SPF model.

Figure 6C illustrates a graph clearly via two triples. Considering, the prefixes the subject (a real world
entity) is uniquely identified as http://example.com#SpaceX which overall height
(http://example.com#hasHeight) is represented by the literal “2180” (note that the unit is not
provided). Furthermore, the same subject has an opening element (
http://example.com#isBoundedBy) that has the unique URI http://example.com#WallY.

Fig 6C. A graph of two triples representing a window with a certain height and an opening element (Prefix:
ex: http://example.com#).

Such a graph can be considered as a RDF data set. The meaning of such a description is that the
statements it contains are true. They make it possible to formulate assertions unambiguously and to
combine fragments of information coming from different sources. The RDF graph of fig. X can be
represented using various syntaxes. The most commonly used syntaxes are RDF/XML (.RDF), Turtle
(.TTL), Notation-3 (.N3) and N-Triples (.NT) (Heath & Bizer, 2011). The most often used syntax for
machine- interpretable graphs is RDF/XML:

<rdf:Description rdf:about="http://example.com/SpaceX">

<ex:hasHeight rdf:datatype="http://www.w3.org/2001/XMLSchema#double">2180</ex:hasHeight>

<ex:isBoundedBy rdf:resource="http://example.com#WallY"

</rdf:Description>

However, throughout this report the Turtle- notation will be used, because it is considered to be the
human- readable syntax for humans:

ex:SpaceX ex:isBoundedBy ex:WallY.

ex:SpaceX ex:hasHeight “2180.00”^^xsd:double .

As already stated, RDF graphs can be improved semantically by using RDF vocabularies or domain
specific ontologies. The most basic elements to describe such an ontology are available in the RDF
Schema (RDFS) vocabulary (Pauwels & Terkaj, 2016).

6.3.2 RDFS

RDFS is the schema language for RDF. The semantics of this language is expressed through the
mechanism of inferencing: The meaning of any construct in RDFS is given trough a making logical

ex:SpaceX

ex:WallY

2180

ex:isBoundedBy

ex:hasHeight

http://example.com/#SpaceX
http://example.com/#hasHeight
http://example.com/#isBoundedBy
http://example.com/#isBoundedBy
http://example.com/#WallY
http://example.com/SpaceX

38

conclusions by computers about the structured RDF statements. For example, it enables to define
ambiguously the RDF- metadata (i.e. via rdfs:Class) and relates these to each other (i.e. via
rdfs:subClassOf).

For instance, figure 6D shows how the class instances are linked to their definition via rdf:type.
These classes are on their turn are asserted as an subclass of the class rdfs:BuildingElement via
rdfs:subClassOf. From this illustration it can be found that both ex:Wall and ex:SpaceX reside
on the same level in the class- hierarchy. According to the RDFS rules it possible to infer that the
instances WallY and SpaceX belong to the concept ex:BuildingElement. So, the graphs hold
actually 2 building elements.

In the same way, it is possible to structure the properties (via rdfs:Property) and the relationships
between them (rdfs:subPropertyOf). Other key constructs to structure properties are
rdfs:domain and rdfs:range which respectively declares the subject and object in a triple.

rdfs:subclassOf

rdfs:subclassOf

rdf:type

rdf:type

ex:SpaceX

ex:WallY

2180

ex:isBoundedBy

ex:hasHeight

ex:Spaceex:Wall

ex:BuildingElement

Fig. 6D A graph of 6 triples representing a window with a certain height and an opening element (prefix:
ex: http://example.com#).

At first sight, these rules may seem simple, but by using combination of asserted and inferred
statements it is possible to reproduce complex real world situations (Allemang & Hendler, 2011).

6.3.3 OWL

More expressive elements to describe data can be achieved by using OWL- ontologies. In short,
OWL further enhances the RDFS concepts to allow making more complex RDF statements, such as
cardinality restrictions, type restrictions, complex class expressions (Pauwels & Terkaj, 2016). An
example is the owl:sameAs construct to merge data from multiple sources, which is used extensively
in the context of Linked Data. By using owl:sameAs it is possible that to state that different resources
actually represent the same real world entity. When resources are determined to be the same,
information about them in different sets sources can be merged. Such a construct in turtle- syntax is
shown below:

 ex:SpaceX owl:sameAs ex:SpaceZ

An ontology is defined as a formal explicit description of formal naming and definition of the types,
properties, and interrelationships of the entities that really or fundamentally exist for a particular
domain of discourse. Ontologies are to improve data integration when ambiguities could exist on
terms used in data sets or when extra knowledge can lead to the discovery of new relationships.
Ontologies can capture the semantics of data, describing the knowledge for sharing in a specific

39

domain and provide reasoning capabilities (Koukias et al., 2013b). For this reason, the purpose of an
ontology is comparable to the EXPRESS functionalities within an IFC- SPF file.

There are basically 2 types of ontologies: A domain ontology that provides a unambiguous description
of specific things from a certain point of view and an upper ontology that describes general things in a
formal way. A concrete example of a domain ontology is the IfcOWL ontology while Dublin Core
functions as an upper ontology.

The full vocabulary of OWL uses URIs in the RDF, RDFS, and OWL namespaces, and it also makes use of
the XML Schema literal definitions. (Segaran, Evans, & Taylor, 2009).

However, it was observed that certain technologies
could only process certain subsets of OWL conveniently.
Therefore, OWL2 (the most recent version of OWL) is
divided into four so-called profiles, namely OWL2 DL,
OWL2 EL, OWL2 QL and OWL2 RL. As outlined in Motik
et al. [19], an OWL2 profile “is a trimmed down version
of OWL2 that trades some expressive power for the
efficiency of reasoning”. In short, in each of the
givenOWL2 profiles, a number of statements that can
be used in OWL2 DL are not allowed. By not allowing
these statements, and thus sacrificing some
expressiveness, important improvements can be made

in terms of performance. Fig. 2 displays the relationships between these three key profiles. Thereby it
can been seen that DL is the largest subset of OWL2 and is the super set of the other three profiles.

6.3.4 SPARQL

RDF graphs are usually stored in so called triplestore (also known as a knowledge base) which can be
seen as a database for the storage and retrieval of triples via semantic queries. The SPARQL Protocol
And RDF Query Language (SPARQL) provides a means for performing such queries. The SPARQL query
language relates closely with the RDF structure (subject, predicate, object) itself. Namely, the key
element of a SPARQL query is the graph pattern. This pattern is a smaller graph including both
resources and (unknown) variables that specifies what information needs to be retrieved from the RDF
graph. SPARQL query patterns are produced as a variant of Turtle (DuCharme, 2013). SPARQL provides
four forms of queries: SELECT, CONSTRUCT, ASK, and DESCRIBE. All of these attempt to find solutions
to a graph pattern, and all share similar constructs. (Segaran et al., 2009). An example of the
commonly used SELECT query (to the graph pattern shown in Fig. X) is given below:

SELECT ?Variable

WHERE {

 ?Variable rdf:type ex:Space.

 }

Hereby SELECT?Variable represents the desired piece of data to be retrieved from the graph. The

WHERE clause specifies the graph pattern which defines ?Variable as a subject of a type

ex:Space. Since there is exactly one subject within the graph that conforms to this pattern, only the

instance ex:SpaceX wil be the result of this query. As already mentioned in section 5.6, EXPRESS

technologies do no provide a query language by themselves (Törmä, 2013).

Fig. 6E The 4 OWL- profiles of OWL2.

40

41

7. Project Analysis

The purpose of this part is manifold. Namely, during this chapter the context of Design Build Finance
Maintain Operate (DBFMO) projects will be elaborated from the perspective of Facility Management
(FM) in making sure that the operation of the facility complies with the specified SE requirements.
Hereby the Business Process Modeling Notation (BPMN) is used to model the process and determine
the main objective(s) of the Linked Data tool. Based upon this process model user requirements will
be determined and prioritized in an immediate way to set up an agile workflow to develop the Linked
Data tool. Thirdly, the architecture of the actual Linked Data tool is described concisely based upon
these user requirements by using the Unified Modeling Language (UML). Finally, a real world use case
is analyzed of which sensor data sets are obtained (or created), summarized and visualized. The end
result will act as a backbone in a way that the future development of the Linked Data tool is able to
actually improve the described monitoring process. During this stage the following technologies were
used: Revit 2015 (together with the IFC for Revit V17.1.0 export extension) and Python 2.7 using the
Pandas 0.18.1 library.

7.1 Process analysis

Currently, the Dutch Central Government Real Estate Agency (CGREA) provides a contractual template
for DBFMO- projects that prescribes in general the operations during the operations & maintenance
phase. Naturally, only the process of verifying compliance to the output specifications (OS) will be
examined: Other related aspects (i.e. revision management when output specifications have to be
changed) are left out. This process could then be described concisely via the following three sub-
processes.

Firstly, the contractor has to provide the client a plan which describes which monitoring activities the
contractor will perform. The contents of such a plan could be described as follows:

1. The contractor is obliged to develop a monitoring system. One of these functions is that the
monitoring system should register warnings by the contractor. These warnings should at least
include a description of the warning together with (the ID of the) registrar, the date and time,
the room, (if possible) its cause, an ID registration number and (if applicable) any
particularities. If the warning is dispatched, the system should able the contractor at least to
register this together with the cause of the warning, the time of recovery, (if applicable) the
obstacles that troubled the dispatching and (if applicable) any particularities.

2. The contractor must enable an impartial third party to perform measurements periodically.
Both the client and the contractor are able to verify the measurements by this third party.

3. The client is able to measure incidentally into what extent the contractor complies to the
agreed output specifications via a(nother) third party (Rijksvastgoeddienst, 2014).

In order to elaborate and validate whether or not this BPMN- model corresponded to the actual
process four expert interviews were conducted. The outcomes can be found within the appendices A,
B, D, E and F. Based upon the outcomes, it appears that the attained description by each interviewee
corresponds closely with the template of the CGREA. They only differ in cases of the instantiation of
parties (contractor and client). For example, the facility management as described in Appendix F is
performed by the main contractor that built the project while in case D FM was conducted by an
actual facility management firm. Therefore it can be concluded that the process analysis is valid. The
final BPMN schema is depicted below as well in Appendix I.

42

Fig. 7A The designed business process (in BPMN notation) for monitoring a building.

The process analysis shows explicitly where the convergence of the produced data by a facility (during
the operations & maintenance phase) takes place and how it is able to define the final outcome of a
DBFMO- monitoring process. Another finding during this stage was that all interviewees stated
(synchronous to the literature) that the data which indicate malfunctions is mainly captured by various
sensors. See for all interviews the appendices A, B, E, F and G. Furthermore, all FM parties used
building related data in some form to mark the location of the sensor(observations). Though, the
convergence of this heterogeneous (raw) monitoring data to meaningful and integrated information
seems to be essential, all of the interviewees state that Facility Management lack in this aspect.
Therefore, the added value of a Linked Data application should lie in linking data sets (output
specifications, sensor monitoring data and building data) that allow verifications of systems in order to
improve FM activities and thereby securing (1) building performance according to the SE requirements
to the owner (and other users) and (2) financial payments to the contractor.

7.2 Requirement analysis

Based upon these 2 identified objectives it is possible to indicate the main functional requirements for

the desired tool functionality. These requirements have been prioritized directly by using the

MoSCoW- method. This technique enables an agile approach in respect to the prototyping process

and thereby keeping the focus throughout the project on delivering the identified business benefits.

The so called “must haves” (M) stands for the obligatory requirements which must be incorporated in

the end result while the “should haves” (S) are strongly desired. The end result will consist of the

“could haves” (C) only if the process allows to do so. The “won’t haves” (W) will explicitly not be

incorporated in the Linked Data tool (DSDM Consortium, 2008). See figure 7B for the prioritized list of

requirements.

 MUST

1 Link an output specifications data set and a sensor data set to an IFC- SPF data model

2 Make use of generic best practices (i.e. Cool URIs, Ontology Engineering 101)

3 Verify systems by checking whether a sensor value differs from a OS value

 SHOULD

4 Visualize the most recent (un)availability in an IFC according to specific time intervals

43

 COULD

6 Register (un)availability of systems in real time

 WON’T

7 Distinguish between different forms of availability

8 The ability to incorporate registered warnings and reparations by actors

9 Visualize results according to the standards of the contractual template for DBFMO-
projects by the CGREA (like with associated ID number, a cause etc.)

Fig. 7B A prioritized list of requirements about what functions the Linked Data tool should comprise of.

7.3 Use Case

In order to capture the interaction of the tool and the user (the FM party) within the previously

described process, a use case model was developed. Via this model it is possible to depict the core

function of the desired architecture. See figure 7C.

Visualization of checked IFC

Queries linked RDF-data

<<include>>

TriplestoreUser

Enrich IFC model

<<include>>

Loads in IFC model

Fig. 7C A use case model of a semantic tool that is able
to a visualize a query result via an IFC- SPF model.

In accordance to the BPMN- schema the use case model consist of an authorized actor (i.e. the

contractor) which queries the Linked Data sets in the triplestore. Thereby the main use case

Visualization of checked IFC illustrates the task Check for the warning continuously which is depicted in

the BPMN- model. However in order to let the system perform this essential task, three other use

cases has to be processed first. Firstly, the correct IFC- model should be imported. Then when the user

wants to verify the current availability of the checked building model, the tool must retrieve the

(already checked) results and enrich the IFC- file.

7.4 Application architecture

Based upon the use case model a visualization of the logical static structure of the desired tool is
made. In this case, a tool (or application) should be seen as a work that is able to process or display
data using programming code (from a triplestore). From the prioritized requirements and the use case
model it can be derived that the desired application consist of different levels (i.e. a triplestore, an
interface) and therefore should have a so called multilayered architecture: Each individual layer
consist of multiple tasks that perform a together a coherent process. In general, such systems could
comprise the following layers:

1. Presentation: Deals with the interactions between a user and tool functionalities
2. Process: Provides the process logic of the tool

44

3. Business: Provides specific business logic for the application
4. Data: Deals with the interaction between the application and the data base
5. Utilities: Provides support for all other layers within the architecture
6. Business Component: Provides general business logic for the application

Within a class diagram these layers can be captured in packages while the tasks correspond to the
actual classes (Hoogendoorn, 2004). For this research, only layers “1. Presentation”, “2. Process”, “4.
Data” and “5. Utilities” have to be incorporated. This means the class diagram can be visualized as
figure 7D.

Basically, this class diagram elaborates the use case model in such a way the actual tool can be
programmed. Due to a lack of UML notations for semantic applications, it is chosen to model the
Linked Data sets in classes according to relational database principles: In order to do so, appropriate
stereotypes have been designed.

Enrichment

- ChangeColor(string)

XYZ- Environment

- setUpXYZ() : void

Query

- get verification result (string) : string

<<Graph>>
Building data

+ systemID : string

<<Graph>>
Sensor data

+ observedSensorValue : float

<<Graph>>
Requirement data

+ MaxSensorValue : float

- loadIfc(.ifc) : void

+ timeStampOfSensorValue : datetime

+ systemID

+ systemGUID: string

+ MinSensorValue : float
- set up HTTP request (string) : void

- read result (string) : string

+ systemID : string

- rep(IfcProduct) : void

Fig. 7D The class diagram of the Linked Data tool that is able to a visualize a query result via an IFC- SPF model.

7.5 Descriptive data analysis

In order to script the tool functionalities a DBFMO- use case had to be obtained from which the actual
data sets could be acquired. This use case is represented by the National Military Museum at Soest in
The Netherlands and is currently maintained by the FM department of the contractor Heijmans.

After the data acquisition a brief data analysis is conducted that consist of two parts. Firstly, a general
overview of the main findings is provided whereafter each data set is analyzed more thoroughly.

7.5.1 General data analysis

It seemed that each set was produced by a different actor in another stage of the building lifecycle
with its own perspective. It also appeared that they were also produced by applications of different
vendors and therefore consist of different information structures (CAD, PDF, Excel). These
characteristics are briefly outlined in figure 7E.

45

 Output specifications (OS) Building model information Sensor data (2014-2016)

Actor Central Government
Real Estate Agency

Heijmans- construction division Heijmans- facility division

Perspective Develop OS Create a model according to OS Maintain building according to
OS

Phase Planning phase Design & Construction Operations & Maintenance

Tool MS Word Autocad Facilicom

Structure Natural language as plain
text descriptions

2D – Geometry in CAD Data points in tabular format

Format .pdf .dwg .xlsx (in MS Acces)

Fig. 7E The class diagram of a semantic tool that is able to a visualize a query result via a IFC- SPF model.

Another important finding was that each data set dealt with building rooms (or spaces) though labeled
these real world entities differently. Namely, a building model describes a room which serves as a
installed location for the sensors (in the sensor data set) and is specified by the requirement in the OS
data set. It must be noted, that the sensor data set did not contain room names at first and could only
be added to Excel- file after an interview with Facility Management. Since it was necessary to
determine which requirement and sensor values corresponded to which room of the building model it
was necessary to map the room names between the sets. See figure 7F for the end result.

Fig. 7F The different room labels that point to the same exposition room entitiy. For example, “Intro-
Experience”, “Krijgsmachtbrede Themaruimte Introductie” en “Krijgsmachtbrede themaruimte introductie” can
be considered as 3 different ways to express the same exposition room in the real world.

7.5.2 Data set analysis

In regard to the OS data set, it was chosen to find a room specification that could be verified by
temperature sensor data for demonstration purposes. Therefore, the requirement “Operatieve
Temperatuur ” was selected. This requirement stated that a temperature sensor value of a certain
room should always be between a specified lower boundary and a specified upper boundary. In order
to enhance the focus of this research, only the 8 exposition rooms on the second level were taken into
account.

It was essential that the building model could be converted to an IFC information model (and get an
adequate COBie MVD). However, the provided model appeared to be set up in a DWG- format which

Output specificaties data set Building data set Sensor data set

Rooms Rooms Rooms

Intro-experience Krijgsmachtbrede
Themaruimte Introductie

Krijgsmachtbrede themaruimte introductie

Hoofdthema 1 nederland en de
wereld

Nederland Krijgsmachtbrede themaruimte 1

Hoofdthema 2 de wereld van de
krijgsmacht

De Krijgsmacht Krijgsmachtbrede themaruimte 2

Pronkzaal Schatkamer Krijgsmachtbrede themaruimte pronkzaal

Hoofdthema 3 militairen in de
schijnwerpers

Militairen Krijgsmachtbrede themaruimte 3

Hoofdthema 4a de wereld van de
techniek

De Toekomst Krijgsmachtbrede themaruimte 4

Hoofdthema 5 operaties Oorlog Krijgsmachtbrede themaruimte 5

Hoofdthema 6 samenleving en
krijgsmacht

Samenleving en
Krijgsmacht

Krijgsmachtbrede themaruimte 6

46

meant that this was not possible. As a solution a BIM- model was created whereby only essential parts
of the building (the second floor and facade) were modeled on a schematic level and finally exported
as an IFC-SPF file (using an adequate mapping template).

An important requirement towards the 8 sensor data sets were the values and associated timestamps.
Even though these values were present, the sensor measurement values were wrongly depicted due
to the fact that the commas were missing: Therefore these values were corrected. The data was sliced
between 2015 and 2016 and each summarized in statistical terms. This procedure and associated
(visualization) results are shown in Descriptive analysis of sensor temperature data. From the results it
appears that the indoor room temperature of each exposition room is stable throughout the whole
year (with a mean of approximately 19,9°C) and does not exceed the imposed boundaries. Therefore,
dummy variables were introduced to have a more varied dataset.

47

8. Ontology Engineering

The purpose of this part is to provide an thorough explanation of how the 3 data sets as described in
section 7.5.2 could be expressed in a formal way by OWL domain ontologies and be interlinked with
each other according to the generic Ontology Engineering 101 best practices. During this phase the
following tool was used: Protegé 4.0.

The scope of such a combined ontology is to enrich and define the SE requirements and FM sensor
data in an explicit way, which allows visualizing which rooms in the associated BIM model do not
comply. With this aim in mind, each subsequent paragraph covers the development of an ontology of
1 data set type. Therefore, each chapter starts with a concise exploration to find ontologies for reuse.
The selection of ontology (elements) was based upon the following criteria (Radulovic et al., 2015):

1. The semantics of the class or property in the ontology relates to the term;
2. If the term relates to a class, the class in the ontology should have as many properties that

correlate to the term as possible;
3. The ontology that describes the class or property related to the search term is widely accepted

and used.

If no ontology conforms to above criteria an own ontology is developed via the following steps: (1)
definition of the classes and the hierarchy, (2) definition of slots (properties) and (3) definition of
facets (Noy & McGuinness, 2001).

8.1 Sensor data

The most common way to express sensor related concepts formally is through the Semantic Sensor
Network (SSN) ontology2 conducted by a W3C incubator group. This ontology originates from 12
other ontologies like CSIRO Sensor Ontology, OnToSensor and SWAMO and several vocabularies (i.e.
SensorML). Furthermore, this ontology is structured following an ontology design pattern called
Stimulus-Sensor-Observation (SSO) while at the same time being aligned to the generic DOLCE Ultra-
Light (DUL) upper ontology (M Compton, Henson, Neuhaus, Lefort, & A, 2009) 3. Hereby an ontology
design pattern can be seen as a flexible abstract (light-weight) template which refers to best practices
for creating an actual (heavy-weight) ontology. Since this ontology will be used to structure the sensor
data set, a concise explanation of SSO, SSN and DUL is provided below.

SSO consist of a minimal set of classes and relations centered around the notions of “Stimuli”,
“Sensor”, and “Observation”. The term “Stimuli” Is hereby considered as the only link to the physical
environment (Semantic Sensor Network Incubator Group, n.d.). However, the SSO ontology cannot be
applied directly because it does not specify the actual meaning of its classes. For example, the SSO
does not provide clarity to the question if the term “Observation” should be interpreted as database
records or real observations.

So in order to enhance the interpretation of the abstract terms, the SSO pattern has been aligned to
the DUL ontology. This upper ontology defines (widely accepted) general concepts
(dul:SocialObject) that can be mapped to concepts of domain specific ontologies

2 SSN URI : http://www.w3.org/2005/Incubator/ssn/ssnx/ssn.
 SSN Namespace : http://purl.oclc.org/NET/ssnx/ssn#.

3 DUL URI : http://www.ontologydesignpatterns.org/ont/dul/DUL.owl.
 DUL Namespace : http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#.

http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
http://purl.oclc.org/NET/ssnx/ssn
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

48

(sso:Observation). By structuring additional classes along the aligned pattern the SSN domain
ontology is able to be a framework to actually describe sensors, observations and related concepts
(Janowicz & Compton, 2010) . This outcome of this process is illustrated by figure 8A.

Fig. 8A A partial view on the integration of the DUL-aligned SSO ontology design
pattern with the Semantic Sensor Network ontology (Janowicz & Compton, 2010)

The SSN ontology is organized, conceptually into ten modules. See figure 8B. The full ontology consists
of 41 concepts and 39 object properties, directly inheriting from 11 DUL concepts and 14 DUL object
properties. It deliberately does not describe concepts from other domains, such as time,
measurement values and locations: These concepts have to be included from other domain ontologies
(Semantic Sensor Network Incubator Group, n.d.).

Fig. 8B A modular overview of the Semantic Sensor Network ontology classes and properties (Semantic Sensor

Network Incubator Group, n.d.).

49

The SSN enables the description of sensor from 4 perspectives (Michael Compton et al., 2012):

1. A sensor perspective, with a focus on what (part of the sensor) senses, how it senses, and what is

sensed;
2. An observation perspective, with a focus on observation data and related metadata;
3. A system perspective, with a focus on systems of sensors and deployments; and,
4. A feature and property perspective, focusing on what senses a particular property or what

observations have been made about a property.

Considering the scope for this ontology, the SSN (data and skeleton) modules that represent the
observation perspective have been used.

SSN allows to complement sensor’s capabilities for time via the object properties
ssn:observationResultTime (represents the time when the result became available) and
ssn:observationSamplingTime (a time at which the sampling took place) (Michael Compton et
al., 2012). Since the timestamp values of the sensor data set represent the actual sampling time,
ssn:observationSamplingTime is selected to link the SSN ontology to a time related ontology
that complies to the selection criteria. In this case, the widely accepted Time domain ontology4 by the
W3C appeared to be sufficient. It is now possible to add the following classes and properties to
express the timestamp values of the sensor data in a formal way by incorporating the XSD vocabulary5:

ssn:Observation ssn:observationSamplingTime time:Instant .

time:Instant time:inXSDTime xsd:DateTime .

This addition to the SSN ontology is depicted by A in figure 8C.

The SSN ontology allows locations to be represented as either abstractions of real-world locations or
as absolute or relative locations. The first case is possible by relating a sensor to a place
(dul:PhysicalPlace) via the property dul:hasLocation. The other approach is possible by relating the
sensor to observable aspects (i.e. the relative latititude and longitude) via ssn:hasProperty (Pfisterer et
al., 2011). Only the first option allows interlinking with the IFC data set through:

 ssn:Sensor dul:hasLocation dul:PhysicalPlace .

This addition to the SSN ontology is depicted by B in figure 8C.

SSN does not define how the temperature values should be expressed. Fortunately, literature
explicitly shows interlinking with the Quantities, Units, Dimensions and Data Type (QUDT) ontology6 is
possible by inferring a ssn:ObservationValue instance as an type of qudt:Quantity via class
subsumption (Bou-ghannam, 2013). However, since the data set is relatively small it is opted to simply
assert this rdf:type- relationship (Kolchin et al., 2015). For example:

ssn:id/ObservationValue/72a3264f-1d9b-11e6-b5be-240a64020db4

 rdf:type ssn:ObservationValue ,

4 Time URI : http://www.w3.org/2006/time.
 Time Namespace : http://www.w3.org/2006/time#.

5 XSD URI : http://www.w3.org/2001/XMLSchema.
 XSD Namespace : http://www.w3.org/2001/XMLSchema#.

6 QUDT URI : http://qudt.org/schema/qudt.
 QUDT Namespace : http://qudt.org/schema/qudt#.

http://www.w3.org/2006/time
http://www.w3.org/2006/time
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://qudt.org/schema/qudt
http://qudt.org/schema/qudt

50

 rdf:type qudt:Quantity .

This allows SSN to express the data values of the room temperature (via the XSD vocabulary) as
follows:

ssn:ObervationValue qudt:numericValue xsd:Float

ssn:ObservationValue qudt:unit qudt:Unit

This addition to the SSN ontology is depicted by C in figure 8C.

In conclusion, the resulting graph consist of the following 5 ontologies that describe each another
aspect: DUL, SSN, TIME, XSD and QUDT. See figure 8C for a visualization of the final result.

SSN (DM)

rdfs: subClassOf

TIME

rdfs: subClassOf

XSD: dateTime

time: inXSDTime

XSD: Float

qudt: numericValue

XSD

QUDT
 qudt: unit

time: Instant

time: TemporalEntity

owl: Thing

ssn: ObservationValue

qudt: Unit

rdfs: subClassOf

rdfs: subClassOf

SSN (OM)

DUL

rdfs: subClassOf rdfs: subClassOf

rdfs: subClassOfrdfs: subClassOf

rdfs: subClassOf

rdfs: subClassOf rdfs: subClassOf rdfs: subClassOf

rdfs: subclassOf

rdfs: subClassOf
rdfs: subclassOf

ssn:observedBy

ssn: featureOfInterest
ssn: observedProperty

ssn: observationResult

ssn: isPropertyOf

ssn: hasValue

ssn: observationSamplingTime dul: hasLocation
DUL

dul: PhysicalPlace

ssn: Observation ssn: Sensor ssn: Property

ssn: SensorOutput

ssn: Feature of interest

dul: SocialObject

dul: Situation

dul: Object

dul: Entity

dul: InformationEntity dul: Quality dul: Regiondul: Region

dul: InformationObjectdul: PysicalObject

A B

C

Fig. 8C An overview of the established ontology to express the sensor data set ambiguously. 4 Shades of grey are
used to distinguish the different vocabularies. The colours distinguish the used ontologies whereby each is

labeled (in bold) and demarcated by dotted lines. The blue circle points to a concept as a linking possibility to the
requirement- and building data set.

8.2 IFC- SPF data

In respect to uplifting the IFC data into an ontological level a number of EXPRESS to OWL conversion
procedures has been proposed so far. This so called IfcOWL provides a Web Ontology Language (OWL)
representation of the Industry Foundation Classes (IFC) schema. The ifcOWL ontology has thereby the
same status as the EXPRESS and XSD schemas of IFC. Since the current ifcOWL relies on findings of

51

previous versions, the most relevant findings concerning the ifcOWL are enumerated below in
chronical order.

One of the earlier methods was proposed by Schevers and Drogemuller by examing a unidirectional
mapping procedure from EXPRESS to OWL for research purposes. The resulting prototype did not map
all the IFC data to OWL though encouraged the exploration for a more adequate conversion (Schevers
& Drogemuller, 2006). Consequently, Beetz et al. proposed a semi-automatic method for converting
EXPRESS schemas to OWL ontologies. Thereby this research explained through use cases how this
enhanced information model could tackle several problems in the AEC domain (Beetz, van Leeuwen, &
de Vries, 2009). Another relevant research project is the OnToSTEP which aimed at providing a fully
automatic conversion mechanism for any EXPRESS schema to an OWL ontology. This conversion is
implemented as a plug-in within the Protegé software tool (Krima et al., 2009). The automated
conversion procedure of IFC into Linked Data presented by Hoang was the first to take into account
the existence of the OWL2 profiles EL, QL and RL and thereby making a case for a conversion
procedure that results into a layered ifcOWL ontology. The most recent mapping procedure by
Pauwels et al. takes the previously mentioned proposals into account and is currently being
considered to be the standard for the ifcOWL7. For this EXPRESS to OWL conversion method 3 criteria
were taken into account, namely (Pauwels & Terkaj, 2016):

1. The ifcOWL ontology must be in OWL2 DL
2. The ifcOWL ontology should match the original EXPRESS schema as closely as possible.
3. The ifcOWL ontology primarily aims at supporting the conversion of IFC instance files into
equivalent RDF files.

This conversion allows the ifcOWL to be structured according to the original IFC Object Model
architecture which is already described thoroughly in chapter 3. Building Information Modeling. For
illustration purposes, Figure 8D shows how the ifcOWL represents the breakdown structure of
IfcSpatialStructureElement, which resembles the breakdown structure of
IfcSpatialStructureElement defined in EXPRESS (see Appendix H).

7 IfcOWL URI:
 http://www.buildingsmart-tech.org/future/linked-data/ifcowl/20150917_latest/IFC2X3_TC1.owl/view.
 IfcOWL Namespace: http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1#.

http://www.buildingsmart-tech.org/future/linked-data/ifcowl/20150917_latest/IFC2X3_TC1.owl/view
http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1

52

ifcowl:isDecomposedBy_ifcObjectDefinition

ifcowl:relatedObjects_ifcRelDecomposes

ifcowl:isDecomposedBy_ifcObjectDefinition

ifcowl:relatedObjects_ifcRelDecomposes

ifcowl:isDecomposedBy_ifcObjectDefinition

ifcowl:relatedObjects_ifcRelDecomposes

ifcowl:isDecomposedBy_ifcObjectDefinition

ifcowl:relatedObjects_ifcRelDecomposes

ifcowl: IfcProject

ifcowl: IfcRelAggregates

ifcowl: IfcSite

ifcowl: IfcRelAggregates

ifcowl: IfcBuilding

ifcowl: IfcRelAggregates

ifcowl: IfcBuildingStorey ifcowl: IfcBuildingStorey

ifcowl: IfcRelAggregates

ifcowl: IfcSpace ifcowl: IfcSpace

ifcowl:relatedObjects_ifcRelDecomposes

ifcowl:relatedObjects_ifcRelDecomposes

Fig. 8D An overview of the essential IfcSpatialStructureElement in ifcOWL. The blue circle points to a
concept as a linking possibility to the sensor- and requirement data set.

The full ontology consists of 1230 concepts and 1578 object properties, while using classes of the
imported EXPRESS and LIST ontologies. Also, the ifcOWL ontology uses OWL classes and properties
that are defined the EXPRESS ontology which imports on its turn the LIST ontology. Currently, only the
(WHERE) RULE and FUNCTION are not implemented within this ifcOWL ontology version (Pauwels &
Terkaj, 2016).

Though it appears to be of secondary importance that an instance RDF file can be modelled from
scratch using the ifcOWL ontology it seems to be that this ontology is/will be a formal BuildingSMART
standard and therefore will be used as a means to express the IFC- SPF data into RDF. Hereby, it
appeared that no other ontologies had to be interlinked.

8.3 SE data

As stated in chapter 2. Systems Engineering, Dutch SE requirement specification activities are usually
conducted conform the ISO 15288. Even though every company interprets the abstract process
descriptions of the ISO 15288 in a slightly different way (partly due to the usage of natural language)
there is yet no agreement for a formal ontology that is able to describe the processes in an explicit and
unambiguous way (Van Ruijven, 2013). This observation has been confirmed by several discussions
with the Semantic Consultancy department of Semmtech. In conclusion, these findings impede the
option for ontology reuse. Therefore, it is chosen to develop an OWL ontology which support the
before mentioned scope.

It appeared that Ruijven established a certain taxonomy and associated collection of defined
relationships within the context of the Dutch infrastructure projects and translated them to a set of 12

53

consistent and coherent information models which together form an integrated representation of the
ISO 15288 standard. Hereof the requirement specification information model and a generic property
and status information model will be used as a template for developing the actual OWL SE ontology.
These models are described concisely in the following paragraph.

Within the requirement specification information model, requirements are usually classified in terms
of severity, engineering discipline, type of requirement. See figure K1 in Appendix K. The requirement
specification is allocated to a party that functions as ‘client’. Basically, a requirement specification will
be a design constraint, functional or a performance requirement. The actual requirement specification
is defined as a piece of text that has a status in the context of the building life cycle and references to
the original source. A requirement specification has a status as well.

Figure K2 in Appendix K shows the information model for properties of any element of a system. As
long as an element of a system (such as a physical object, activity or event) exists on the class level a
property is accompanied by a property specification, defining the range (upper and lower boundary)
and the unit of measurement in which the property is expressed (Van Ruijven, 2013).

A top-down approach was used based upon the classes and properties of the before mentioned
diagrams to develop the actual OWL ontology which is named as Systems Engineering and visualizaed
in figure 8E.

Firstly, the class Requirement was selected together with the Party –class and defined respectively as
se:Requirement and se:Organization. Se:Requirement could be considered to be a system
element and therefore resemble a generic Possible Individual class as shown figure K2 in Appendix K.
This assumption allows to specify its properties in a simplified fashion: The class Property Specification
has a direct link with the se:Requirement class:

 se:Requirement se:specifiesBoundaries se:QuantityValue .

The term of the class Property specification was considered as too generic, and therefore renamed
as se:QuantityValue to explicitly state (and define) that it can be used for specifying numerical
quantities. The original data set of the requirements is structured by its related room and categorized
by a condition (i.e. temperature, acoustics). Therefore, the classes se:Condition and se:Room are
introduced to express these real-world entities in an abstract way:

se:Requirement se:specifies se:Room .
se:Requirement se:categorizedBy se:Condition .

For example, this allows an actor to query for all requirements in regard to the room “De Pronkzaal”
or all requirements related to “Acoustics”. Furthermore, se:Room provides interlinking possibilities to
the IFC data set. Finally, as a means of defining an hierarchical structure all concepts of the SE
ontology are a subclass of owl:Thing.

The properties is lower bound for and is upper bound for were renamed and added to the graph to
describe explicitly se:QuantityValue and eventually parameterize se:Requirement:

se:QuantityValue se:lowerBoundary xsd:float ,

se:upperBoundary xsd:float .

Finally, slots were defined for each property. From the context of this research, the definition of only
rdfs:domain and rdfs:range was sufficient. See figure 8E for the resulting graph. In conclusion,

54

the resulting ontology consists of 6 concepts while having 7 properties. The ontology has been called
Systems Engineering (with prefix as se).

rdfs:SubClassOff

SE

XSD

se: specifiesBoundaries

se: categorizedBy

se: specifies se:ResponsibilityFor

rdfs:SubClassOff

rdfs:SubClassOff

se:lowerBoundary

se:upperBoundary

XSD: Float

rdfs:SubClassOff

rdfs:SubClassOff

XSD: Float

se:Unit

XSD: String

se: Condition

se: Room se: Requirement se: Organization

se:QuantityValue

owl: Thing

Fig. 8E An overview of the established SE ontology to express the requirement data set in a formal way.
The blue circle points to a concept as a linking possibility with the sensor- and building data set.

55

9. Linked Data generation

The goal of this part is to provide an elaborated explanation about the way the Linked Data sets are
actually created according to the selected domain ontologies. There are 4 main Linked Data principles
which will be taken into account during the conversion process and the structuring of this chapter,
namely: (1) The usage of URIs for identification of resources, (2) The use of HTTP, (3) Usage of open
standards, like RDF and (4) Referral to resources in other graphs. Each of the graphs will be imported
into the Allegrograph triplestore. During this phase the following technologies were used:
AllegroGraph, Python 2.7 using the RDFLib 4.2.1 and Pandas 0.18.1 libraries and Gruff 5.1.7.

9.1 Naming things with HTTP URIs

The URIs for this research are carefully constructed according to the (303) URI- strategy for Linked
Data which was initiated by Geonovum and the Dutch government. This strategy is on its turn, based
upon the principles of Cool URIs (Overbeek & van den Brink, 2013) which allows the URIs to have the
following composition:

http://{domain}/{type}/{concept}/{reference}

It is chosen to use http://example.com/ as a base URI because this domain is free to use without

prior coordination or asking permission8. Thereafter, the key term id is minted which let users know

that the URI concerns a data instance (the other option is def which is used to refer to a definition
of a concept of an ontology). This term is followed by a concept that belongs to the real world entity
that a practioner wants to express. Finally, a GUID as a means of a reference is added to ensure
uniqueness of URIs. A concrete example of a URI construct of a data instance is (Overbeek & van den
Brink, 2013):

http://example.com/id/Instant/338d0dae-1d9a-11e6-83f6-240a64020db4

9.2 Describing things with RDF

As already identified in chapter 3, the data sets containing the sensor observations and the system
specifications have a tabular data structure (in Excel) while the building model is expressed in IFC- SPF.
This enforces the paragraph to be split up into two subparts.

9.2.1 IFC- SPF data

It appears there is already a tool9 which is able to convert the IFC file into RDF and conforms to the
ifcOWL described in the previous paragraph. See Appendix M for a slice of the end result. The
appendix shows thereby in blue which namespaces are used and how a IfcSpace is described in
RDF- triples. A partial RDF- graph was validated successfully via the online W3C- validator10, wherafter
the full data set was successfully imported into the triplestore.

9.2.2 Tabular data

It appears that there are various ways to convert tabular data into RDF via tools like Linked Open Data
(LOD)Refine. However, for flexibility reasons it was chosen to use the Python programming language

8 See: http://www.example.com/.
9 See: https://github.com/mmlab/IFC-to-RDF-converter.
10 See : https://www.w3.org/RDF/Validator/.

http://example.com/
http://example.com/id/Instant/338d0dae-1d9a-11e6-83f6-240a64020db4
http://www.example.com/
https://github.com/mmlab/IFC-to-RDF-converter
https://www.w3.org/RDF/Validator/

56

to conduct the RDF- transformation by following a widely- accepted conversion method. From the
existing methodologies available, the CSV on the Web (CSVW) procedure by the W3C11 was selected
due to its generic and stable conversion procedure.
The basic purpose of CSVW is to enable a description of a CSV via metadata by using a second data
model: A JavaScript Object Notation for Linked Data (JSON-LD) formatted document. In general, JSON-
LD facilitate conversion methods for encoding Linked Data by using the JSON- structure.
In this context, JSON-LD can be described as a table description. Such a file consist of a table schema
object which defines an array of descriptions per CSV-column by using various name/values pairs
(McGlinn, 2015). In order to let a program iterate over the annotated CSV data and use the
annotations per column in the JSON-LD file to create computer interpretable triples, CSVW defines a
mechanism to construct URI’s (of CSV values). Namely, the names aboutUrl and valueUrl allows
users to construct URI’s for subjects and objects. Hereby the URI template: #concept-{column} is
used as value. When defining concept and column, column will take the cell value in the CSV -
column to construct a URI. The specified namespaces in the JSON- LD file are used for constructing
predicates. If a datatype is allocated to a CSV- column the CSV-values will be literals which conform to
the defined XSD- datatype. Using these principles it is possible to create virtual columns for injecting
extra information (CSV on the Web Working Group, 2015).
Even though the logic of an JSON-LD data model is sufficient for a computer program to exhibit the
RDF conversion, it was chosen to deviate slightly from the CSVW procedure. Both the SE and sensor
Excel data set had to undergo cleansing and transformation operations such as adding and
restructuring columns and file conversion (from Excel to CSV) before the conversion could take place.
During these operations it appeared to be more efficient to create directly the URI’s for the subjects
and objects as well instead of creating them using aboutUrl and ValueUrl in the second
procedure in another file. This approach let the processes data preparation on the one hand and data
annotation on the other to be separated from each other and therefore reducing the complexity of
the overall CSVW procedure.
Both the data cleansing and transformation procedures (via Python) are depicted simultaneously in
figure N1 in Appendix N. The associated code is shown in Appendix O. First, the original sensor data
table is adjusted by removing and renaming columns. Secondly, extra columns are added of which the
headers represents the properties. Each new column consist of URIs to enable RDF transformation of
things (concepts) identified by the SSN ontology.
This process is repeated 8 times (since each room has 1 sensor which generates 1 data set). For
visualization purposes of the outcome, a truncated Excel- sheet of the room “Introduction” can be
found in figure Q1 in Appendix Q. In regard to the SE data a new CSV data set is created, which means
that only little transformation procedures were required. See Appendix P for the code and figure Q2 in
Appendix Q for the intermediate results.
When having both data sets aligned with the SSN ontology and SE ontology, each one was annotated
via the JSON-LD data model. Since the instance data contains already URIs for the subjects and objects
only URIs for the properties had to b constructed. This has been done via the propertyURL

statement. See Appendix R and Appendix S.
Basically, the task of the RDF parser is to read each row of the tabular data model and generate RDF
triples. The used RDF parser is based upon the Python code by Walshe, Diarmuid Ryan and Markus
Ackermann12 and adjusted to the specific needs of the data sets. The activity diagram of the parser is
shown in figure M2 in Appendix M while Appendix T shows the script for the actual sensor data
conversion.
First an empty graph is created to which triples can be added to. Secondly, the code creates triples
that describe the CSV-table (as a subject) by using the generic name/values as predicate and object. It
then creates then for each CSV- line a ssn:Observation subject. This means that the 1320 lines of
CSV- data represent 1320 ssn:observation instances. Based upon the cell location the code is

11 See: http://w3c.github.io/csvw/csv2rdf/.
12 See: https://github.com/CNGL-repo/MTeval/blob/master/rdf_from_csvw.py.

http://w3c.github.io/csvw/csv2rdf/
https://github.com/CNGL-repo/MTeval/blob/master/rdf_from_csvw.py

57

able to determine whether or not a cell value represents a real world entity and with which literal or
resource it should form a triple. Since the design of the URI allows an instance to hold its concept, it is
possible to link an instance to its concept by using rdf:type. In this way the graph is structured
following the OWL ontology as described within the previous chapter. See Appendix V. The same
procedures (the CSVW method and Python script) were used for converting the Systems Engineering
data. The associated code can be found in Appendix U while the result is shown by Appendix W.
Finally, of each graph a snippet was produced. After getting nine times a successful result of each RDF-
snippet from the online- W3C validator their whole graphs were imported into the same repository as
of the IFC-RDF graph within the triplestore.

9.3. Making links to other data sets

The third step is to link the each data set (the output specifications data, a building model and the
temperature data set) the room instance which represent the same resource together and thereby
interlink the 10 graphs. For example, the rooms 191, Hoofdthema1NederlandEnDeWereld and
KrijgsmachtbredeThemaruimte1 all represent the same entity in the real world. The mapping
procedure was conducted by using the owl:SameAs predicate. Such a mapping then allows to
navigate easily from one data set to another while performing distributed joins.
The script that exhibits the semi-automatic mapping procedure is shown in Appendix X. Firstly, all
rooms of each data set are queried and put into 3 separate lists in the same order. By creating a loop
it is possible to get of each list the instance that points to the same resource. In the same loop the
following triples are created for each defined room in the IFC data set:

Ifcowl:IfcSpace_191 owl:sameAs ex:id/Room/Hoofdthema1NederlandEnDeWereld

Ifcowl:IfcSpace_191 owl:sameAs ex:id/PhysicalPlace/KrijgsmachtbredeThemaruimte1

These triples are then added to a separate Link graph: See Appendix Y. Since owl:sameAs appears to

be a symmetrical and a transitive property, it is only required to assert two triples per room (Allemang

& Hendler, 2011). Namely, because of these qualities it is possible to (if necessary) infer the linkage

between Hoofdthema1NederlandEnDeWereld and KrijgsmachtbredeThemaruimte1 by using an

inference engine of the triplestore. Finally, this link graph was validated successfully and imported into

the Allegrograph triple store as well. By adding this graph to the triplestore all 3 graphs are now linked

to each other (via assertion or inference). See figure 9A for a visualization of the final result.

Fig 9A A simplified visualization of the 3 linked RDF- graphs based upon the room- entity which was defined in all

three graphs.

58

59

10. Rule - based verification

The aim of this chapter is to provide a description about the development of a rule mechanism that is
able to check if current sensor values lie between the specified boundaries. This checking procedure
allows to visualize automatically whether or not a room of the Building Information Model complies to
a certain requirement. During this stage the following technologies were used: AllegroGraph and
Python 2.7 using the RDFLib 4.2.1, Urllib and IfcOpenShell 0.4.0 libraries.

From the Semantic Web context of this research, rules can be defined as representations of
knowledge. They are basically represented in the form of IF-THEN clauses containing logical functions
and operations and can be expressed in rule languages or formats, such as Semantic Web Rule
Language (SWRL) or SPARQL. Since the required room verification does not exceed the expressive
power of power of SPARQL, dedicated rule languages (SWRL, N3, RIF and SPIN) are avoided.

The first part of this chapter explains the used SPARQL query by decompose the actual SPARQL code.
Subsequently, a concise explanation will be provided in how the query is able to retrieve verification
results from the online triplestore. Finally, the procedure to visualize the results will be described.

10.1 SPARQL Query

The logic of a SELECT SPARQL query specifies that if all the conditions are matched, the conclusions

are operated. These conditions described as a graph pattern in the WHERE clause. For this case, the

SPARQL query is extended by the keywords: FILTER and a subquery (also a child query). The child

query allows the retrieval of sensor values of the current time, while the FILTER checks for each room

if the statement about the retrieved sensor values holds true. If true, the room will be retrieved as a

verification result.

The subquery is shown in figure 6A. This small query retrieves the most recent date time value and

stores this as a variable max_DateTime.

SELECT (MAX(?DateTime) AS ?max_DateTime)

WHERE {?Instant time:inXSDDateTime ?DateTime}

Then this variable is used as a condition in the graph pattern which is used for the retrieval of sensor
values. This goes as follows. First, the GUIDs of each rooms is retrieved by the pattern:

?IfcRoom a ifcowl:IfcSpace .

?IfcRoom ifcowl:globalId_IfcRoot ?IfcGuid .

?IfcGuid express:hasString ?IfcString .

Via the next statement it is possible to navigate to the other SSN sensor data set:

?IfcRoom owl:sameAs ?SsnRoom .

In this set the actual sensor values (?Float) at max_DateTime are selected. Hereafter the Systems
Engineering set is entered which allows the selection of the lower boundary (?LowerBoundary) and
upper boundary (?UpperBoundary) via the triple:

 ?IfcRoom owl:sameAs ?SeRoom .

Now that all current sensor values are selected together with the boundaries, it possible to retrieve
the (GUIDS of the) rooms that do not comply by imposing the FILTER declaration:

60

FILTER ((?Float < ?LowerBoundary || ?Float > ?UpperBoundary))

By using the ORDER BY desc statement it is possible to order the results. The full SPARQL query is
shown in Appendix Z.

10.2 REST Protocol

In order to visualize the malfunctioning rooms it is crucial to be able to fire the described query from a
(Python) program and then store the retrieved result. Since the Allegrograph triplestore is online
accessible though the HTTP protocol the Python script has to make use of Representational State
transfer (REST) functionalities. REST can be considered to be the software architecture of the web. Its
protocol allows systems to communicate over each other over the web using typical HTTP terms, like
GET, POST and DELETE. This protocol allows the script to send the query to the remote triplestore,
get the (XML) results and store the result in a variable. The full code is shows in Appendix Z.

10.3 IFC Visualization

The final step is to visualize the results within a BIM model. This can be established by using the
retrieved GUID(s) in the XML result to look up the room(s) in the building model. When each room is
found, a virtual RGB (Red-Green-Blue) color is given to its IfcSpace equivalent in the IFC file. This is
done by using the IfcOpenShell library13. The result is shown in fig 10A.

Fig. 10E A visualization of the verification results in an IFC- model of the National Military Museum.

13 See: http://ifcopenshell.org/python.html.

http://ifcopenshell.org/python.html

61

11. Conclusion & Discussion

The aim of this chapter is to provide a satisfiable answer to the research question as described in
section 1.3. This will be done by describing the developed “proof of concept” (or prototype) while
stating its societal and scientific relevance therafter. Subsequently, several design decisions will be
highlighted which could be improved if this study would be reproduced in the future. Finally, multiple
proposals will be recommended for further studies that could dwell upon this research.

11.1 Conclusion

Nowadays, information management within the built environment and particularly information
exchange between different project phases and associated systems is becoming increasingly
important.

Building Information Modeling (BIM) approach is therefore becoming a global standard within the AEC
domain. However, limitations have been found by academica as well as by practioners within the
industry when integrating and sharing data sets among different AEC domains as defined by the BIM
strategy. Therefore, this research explored a new phenomenon called Linked Data in order to tackle
this interoperability issue in a important and relevant use case.

This use case of this research project revolves around the fact that owners of buildings (represented
by Systems Engineering (SE)) require more and more from their assets while the need to synchronize
heterogeneous sensor data sources for monitoring the building performance become thereby more
essential. Yet literature explains that Facility Management (FM) is still in its infancy in its adoption to
advanced information models and is unable to integrate or reuse data sets from other data sets
automatically. Therefore, the research question during this project was:

In which way could linked sensor data be integrated into the BIM model to check the

performance of its associated building based upon the agreed output specifications during
the maintenance & operations phase?

In order to solve the research question, a combined ontology was engineered to enrich and define the
SE requirements and FM temperature sensor data in an explicit way, which allowed to visualize which
rooms in the associated BIM model did not comply to the system specifications. Thereby, the building
information model was generated into a RDF data model (via an IFC-RDF converter) according to the
IfcOWL. The sensor data set was semantically expressed according to the following ontologies: SSN,
time, QUDT and DUL. In regard to the requirement data set, it occurred that there were no tested (let
alone widely accepted) ontologies. For this reason, a new Systems Engineering ontology was
engineered. Hereby an ontology pattern (information models based upon the SE ISO 15288 standard)
was used. In order to convert the latter two data sets in actual RDF data models, the generic CSVW
procedure was used. The pattern for the used HTTP URI to identify resources in those 2 data sets was
constructed as: http://{domain}/{type}/{concept}/{reference}.

Finally, the IF-ELSE logic of a SELECT SPARQL query to a remote triplestore was used for the retrieval of
the GUIDS of rooms of which the observed sensor values exceeded the specified upper and lower
boundaries. This query was formulated in such a way it could make use of the REST architecture of the
Web. The retrieved results were used to provide virtually a RGB (Red-Green-Blue) color to the
IfcSpace elements of the BIM model.

62

11.2 Discussion

11.2.1 Relevance of the research

The relevance of this research is twofold. From an industry- like perspective, this proof of concept
explaines that by using open Semantic Web technologies it is possible to improve the building
performance of construction objects.Namely, the developed proof of concept provides insight how to
transform and integrate other data sets (like humidity, occupancy patterns and weather conditions) in
order to verify numerous other output specifications as well. Then, the client would (and/or the
occupants would) be able to use a building which complies to their needs while the contractor is able
monitor the building more effectively (and thereby avoiding fines). Ultimately, this situation also could
lead to a more solid relationship between client and contractor.

By means of incorporating a real world case scenario and showing thereby the added value of Linked
Data this report aims to stimulate the adoption of open Semantic Web technologies within the built
environment. From a scientific- like perspective therefore, this report contributes to the pioneering
Linked Data movement within the AEC domain which aims to improve the long- lasting interoperability
problem by using Semantic Web technologies. This is essential since such open technologies could
support the AEC domain during the upcoming data revolution (i.e. the increasing importance of
predictive analytics) by making data accessable, retrievable, reusable and integrated witch each other
in a meaningful way without being forced into a vendor lock- in.

11.2.2 Future work

A way to improve this research is to develop a more sophisticated Linked Data tool. Namely, within
this research the tool development has been subjected to several limitations and objectives and
should therefore be considered for scientific use only. Furthermore, the research could be improved
by applying the CSVW- conversion method strictly and thereby relying more upon a standardized logic
(derived from the JSON- LD table) instead of a piece of code. An advantage would be that other users
would be able to adjust the information model on their own terms just by consulting the extensive and
open documentation on the Internet instead of making contact to the specific developer of a
customized script.

As explained during the research, all graphs were imported as one within a triplestore to allow
SPARQL- queries to retrieve information. However, in a real world situation all three graph data sets-
(1) requirements data, (2) building data and (3) temperature sensor data- are obviously produced and
stored by three different parties and therefore reside each in a separate triplestore. Then, in order to
get the same results as shown within this report a federated SPARQL- query has to be formulated
which retrieves the data from 3 SPARQL- endpoints instead of 1 SPARQL- endpoint.

Furthermore, it would be an improvement to put more emphasis upon the determination of
correspondences between concepts of different ontologies. This aspect is called ontology aligment
and was relatively underexposed during the research. For example, it could have been possible to
interlink the RDF- graphs by using predicates coming from the Simple Knowledge Organization System
(SKOS) vocabulary, like skos:closeMatch or skos:exactMatch.

Further research could focus upon extending the use of sensor data by Semantic Web technologies.

For example, allowing sensor devices to communicate with each other in a meaningful way despite

their different protocols and technologies. A means to conduct such an experiment is by using the

63

Smart Appliances reference ontology (SAREF) ontology. Ultimately, such an experiment could lead to

automation of building services based upon the agreed output specifications.

Another research area is the exploration of the possibilities for and consequences of the development

of a Linked Data tool that operates upon actual streaming (sensor) data. It would be interesting to

explore to which extent the proposed research method in this research would hold in such a project or

that a whole new Linked Data recipe would be necessary like the RDB to RDF Mapping Language

(R2RML). A final result would be to actually visualize the checked rooms in real time and enable actual

monitoring via the Internet.

The above highlighted aspects could improve significantly the developed Linked Data prototype. By
using the conclusions and recommendations within this report it is possible to develop a simple Linked
Data information system which can be used in practice. Ultimately, such information systems could
support the Linked Data movement within the AEC domain with their goal of achieving improvements
in cost, value and environmental performance in the creation and operation of civil infrastructure and
buildings on a global scale.

64

65

12 References

Algemene Rekenkamer. (2013). Contractmanagement bij DBFMO-projecten. Algemene Rekenkamer,

50. Retrieved from
http://www.rekenkamer.nl/Publicaties/Onderzoeksrapporten/Introducties/2013/06/Contractma
nagement_bij_DBFMO_projecten

Allemang, D., & Hendler, J. (2011). Semantic Web for the Working Ontologist, (June), 1.
http://doi.org/10.1016/B978-0-12-385965-5.10001-9

Beetz, J. (2009). Facilitating distributed collaboration in the AEC / FM sector using Semantic Web
Technologies.

Beetz, J., van Leeuwen, J., & de Vries, B. (2009). IfcOWL: A case of transforming EXPRESS schemas into
ontologies. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 23(01), 89.
http://doi.org/10.1017/S0890060409000122

BKCASE Editorial Board. (2014). Guide to the Systems Engineering Body of Knowledge. Guide to the
Systems Engineering Body of Knowledge (SEBoK), 945. Retrieved from
http://g2sebok.incose.org/app/mss/menu/index.cfm

Borgo, S., Sanfilippo, E. M., Aleksandra, S., & Terkaj, W. (2015). Ontological Analysis and Engineering
Standards, 1–28. http://doi.org/10.1007/978-3-319-15326-1

Bou-ghannam, A. (2013). Foundational Ontologies for Smarter Industries, 1–28. Retrieved from
http://www.redbooks.ibm.com/abstracts/redp5081.html?Open

Bryde, D., Broquetas, M., & Volm, J. M. (2013). The project benefits of building information modelling
(BIM). International Journal of Project Management, 31(7), 971–980.
http://doi.org/10.1016/j.ijproman.2012.12.001

BuildingSMART. (n.d.). architecture diagram. Retrieved June 11, 2016, from
http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/index.htm

buildingSMART. (n.d.). IfcSpace. Retrieved June 11, 2016, from http://www.buildingsmart-
tech.org/ifc/IFC2x3/TC1/html/ifcproductextension/lexical/ifcspace.htm

BuildingSMART. (2009). IFD Library. Framework, (April), 1–9. Retrieved from https://www.uneto-
vni.nl/cms/streambin.aspx?requestid=EA0F4F6F-560D-4D15-9BD6-0B651404B812

BuildingSMART. (2010). Information Delivery Manual Guide to Components and Development
Methods. buildingSMART, 1–84.

Compton, M., Barnaghi, P., Bermudez, L., García-Castro, R., Corcho, O., Cox, S., … Taylor, K. (2012). The
SSN ontology of the W3C semantic sensor network incubator group. Journal of Web Semantics,
17, 25–32. http://doi.org/10.1016/j.websem.2012.05.003

Compton, M., Henson, C., Neuhaus, H., Lefort, L., & A, A. S. (2009). Survey of the Semantic Speci
Cation of Sensors. In 2nd International Semantic Sensor Networks Workshop.

CSV on the Web Working Group. (2015). Generating RDF from Tabular Data on the Web. Retrieved
from https://www.w3.org/TR/2015/REC-csv2rdf-20151217/

Curry, E., O’Donnell, J., Corry, E., Hasan, S., Keane, M., & O’Riain, S. (2013). Linking building data in the
cloud: Integrating cross-domain building data using linked data. Advanced Engineering
Informatics, 27(2), 206–219. http://doi.org/10.1016/j.aei.2012.10.003

66

Dankers, M., van Geel, F., & Segers, N. M. (2014). A Web-platform for Linking IFC to External
Information during the Entire Lifecycle of a Building. 12th International Conference on Design and
Decision Support Systems in Architecture and Urban Planning, DDSS 2014, 22, 138–147.
http://doi.org/http://dx.doi.org/10.1016/j.proenv.2014.11.014

Davis, A. (1993). Software Requirements : objects, functions and states. Prentice Hall.

Dawood, N., Vukovic, V., & Kassem, M. (2015). Bim for Facilities Management : Evaluating Bim
Standards in Asset Register Creation and Service Life Planning. Journal of Information Technology
in Construction, 20(January), 313–331.

Decker, S., Harmelen, F. Van, Broekstra, J., Erdmann, M., Fensel, D., Horrocks, I., … Melnik, S. (2000).
The Semantic Web - on the respective Roles of XML and RDF. IEEE Internet Computing,
4(October), 19. http://doi.org/10.1109/4236.877487

Domingues, P., Carreira, P., Vieira, R., & Kastner, W. (2016). Building Automation Systems: Concepts
and Technology Review. Computer Standards & Interfaces, 45, 1–12.
http://doi.org/10.1016/j.csi.2015.11.005

Douglass, B. P. (2016). What Is Model-Based Systems Engineering? Agile Systems Engineering.
http://doi.org/10.1016/B978-0-12-802120-0.00001-1

DSDM Consortium. (2008). DSDM : Enabling Business Agility. Framework, 1–289.

DuCharme, B. (2013). Learning SPARQL.

Eastman, C. e, Teicholz, P., Sacks, R., & Liston, K. (2011). BIM Handbook. PhD Proposal (2nd ed., Vol. 1).
New Jersey. http://doi.org/10.1017/CBO9781107415324.004

Eastman, P. C. M., Tech, G., Ga, A., & Eastman, C. (2011). 2011 Charles M . Eastman Top Phd Paper
Award Information Delivery Manuals To Integrate Building.

Freeman, J. R. (2015). Guide to the System Engineering Body of Knowledge (SEBoK). Caise15, 44(7),
151–154.

Heath, T., & Bizer, C. (2011). Linked data: Evolving the Web into a global data space (1st edition).
Synthesis Lectures on the Semantic Web Theory and Technology 11 (Vol. 1).
http://doi.org/10.2200/S00334ED1V01Y201102WBE001

Hoogendoorn, S. (2004). Pragmatisch modelleren met UML 2.0. Pearson Education Benelux.

INCOSE. (2006). Systems engineering handbook. Incose, 185. Retrieved from
http://smslab.kaist.ac.kr/Course/CC532/2012/LectureNote/2012/INCOSE Systems Engineering
Handbook v3.1 5-Sep-2007.pdf

INCOSE. (2007). Systems Engineering Vision 2020. Systems Engineering, 1(September). Retrieved from
http://www.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf

International Alliance of Interoperability (IAI). (2007). The buildingSMART Glossary of Terms, (January).

Janowicz, K., & Compton, M. (2010). The stimulus-sensor-observation ontology design pattern and its
integration into the semantic sensor network ontology. CEUR Workshop Proceedings, 668.

Kapourani, B., Fotopoulou, E., Papaspyros, D., Zafeiropoulos, A., Mouzakitis, S., & Koussouris, S. (2015).
On the Move to Meaningful Internet Systems: OTM 2015 Workshops. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) (Vol. 9416). http://doi.org/10.1007/978-3-319-26138-6

67

Kolchin, M., Klimov, N., Andreev, A., Shilin, I., Garayzuev, D., Mouromtsev, D., & Zakoldaev, D. (2015).
Ontologies for web of things: A pragmatic review. Communications in Computer and Information
Science, 518, 102–116. http://doi.org/10.1007/978-3-319-24543-0_8

Krima, S., Barbau, R., Fiorentini, X., Rachuri, S., Foufou, S., & Sriram, R. D. (2009). OntoSTEP : OWL-DL
ontology for STEP. Technology.

Liebich, T. (2009). IFC 2x Edition 3: Model Implementation Guide. System, 1–188.

Locatelli, G., Mancini, M., & Romano, E. (2014). Systems Engineering to improve the governance in
complex project environments. International Journal of Project Management, 32(8), 1395–1410.
http://doi.org/10.1016/j.ijproman.2013.10.007

Loffredo, D. (1999). Fundamentals of STEP implementation. STEP Tools, Inc, 1–12. Retrieved from
ftp://mail.im.tku.edu.tw/Prof_Shyur/PDM/Paper/David.pdf

McGlinn, K. (2015). CSVW Tutorial Files. Retrieved from http://phaedrus.scss.tcd.ie/buildviz/csvw/

Moon, H., Kim, B., & Choi, M. (2013). A Bim Based Data Model for an Integrated Building Energy
Information Management in the Design and Operational Stages. 13th Conference of International
Performance Simulation Association, Chambery, France, August 26-28, 3217–3224. Retrieved
from http://www.ibpsa.org/proceedings/BS2013/p_2517.pdf

Noy, N., & McGuinness, D. (2001). Ontology development 101: A guide to creating your first ontology.
Development, 32, 1–25. http://doi.org/10.1016/j.artmed.2004.01.014

Overbeek, H., & van den Brink, L. (2013). Towards a national URI-Strategy for Linked Data of the Dutch
public sector, (2), 1–19. Retrieved from http://www.pilod.nl/w/images/a/aa/D1-2013-09-
19_Towards_a_NL_URI_Strategy.pdf

Pauwels, P. (2011). Ontologies in architecture, engineering and construction (AEC) (pp. 19–21).
Barcelona.

Pauwels, P. (2014). Supporting Decision-Making in the Building Life-Cycle Using Linked Building Data.
Buildings (Vol. 4). http://doi.org/10.3390/buildings4030549

Pauwels, P., & Terkaj, W. (2016). EXPRESS to OWL for construction industry: Towards a
recommendable and usable ifcOWL ontology. Automation in Construction, 63(January), 100–133.
http://doi.org/10.1016/j.autcon.2015.12.003

Pfisterer, D., Romer, K., Bimschas, D., Kleine, O., Mietz, R., Truong, C., … others. (2011). SPITFIRE:
toward a semantic web of things. Communications Magazine, IEEE, 49(11), 40–48. Retrieved
from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6069708\nhttp://ieeexplore.ieee.org/Xplo
re/cookiedetectresponse.jsp?reload=true\nhttp://www.iti.uni-
luebeck.de/fileadmin/user_upload/Paper/IEEEComMag.pdf

Potkany, M., Vetrakova, M., & Babiakova, M. (2015). Facility Management and Its Importance in the
Analysis of Building Life Cycle. Procedia Economics and Finance, 26(15), 202–208.
http://doi.org/10.1016/S2212-5671(15)00814-X

Radulovic, F., Poveda-Villalón, M., Vila-Suero, D., Rodríguez-Doncel, V., García-Castro, R., & Gómez-
Pérez, A. (2015). Guidelines for Linked Data generation and publication: An example in building
energy consumption. Automation in Construction, 57, 178–187.
http://doi.org/10.1016/j.autcon.2015.04.002

Rijksvastgoeddienst. (2014). Rijksbrede modelovereenkomst DBFMO huisvesting, Model-Vers, 141.

68

Ryen, E. (2008). Overview of the System Engineering Process Prepared by, (March), 10–13, 15–16.
Retrieved from https://www.dot.nd.gov/divisions/maintenance/docs/OverviewOfSEA.pdf

Schevers, H., & Drogemuller, R. (2006). Converting the industry foundation classes to the web
ontology language. Proceedings - First International Conference on Semantics, Knowledge and
Grid, SKG 2005, (Skg 2005), 2005–2007. http://doi.org/10.1109/SKG.2005.59

Segaran, T., Evans, C., & Taylor, J. (2009). Programming the Semantic Web. Statewide Agricultural Land
Use Baseline 2015 (Vol. 1). http://doi.org/10.1017/CBO9781107415324.004

Semantic Sensor Network Incubator Group. (n.d.). No Title. Retrieved June 11, 2016, from
https://www.w3.org/2005/Incubator/ssn/wiki/Report_Work_on_the_SSN_ontology

Szeredi, P., Lukácsy, G., & Benko, T. (2014). The Semantic Web Explained. Governing Sustainability.
http://doi.org/10.1017/CBO9780511807756.003

Törmä, S. (2013). Semantic linking of building information models. Proceedings - 2013 IEEE 7th
International Conference on Semantic Computing, ICSC 2013, 412–419.
http://doi.org/10.1109/ICSC.2013.80

Van Ruijven, L. C. (2013). Ontology for systems engineering. Procedia Computer Science, 16, 383–392.
http://doi.org/10.1016/j.procs.2013.01.040

Verweij, S. (2015). Producing satisfactory outcomes in the implementation phase of PPP infrastructure
projects : A fuzzy set qualitative comparative analysis of 27 road constructions in the Netherlands

☆ , ☆☆. Jpma, 33(8), 1877–1887. http://doi.org/10.1016/j.ijproman.2015.08.006

Volk, R., Stengel, J., & Schultmann, F. (2014). Building Information Modeling (BIM) for existing
buildings - Literature review and future needs. Automation in Construction, 38, 109–127.
http://doi.org/10.1016/j.autcon.2013.10.023

Watson, A. (2011). Digital buildings - Challenges and opportunities. Advanced Engineering Informatics,
25(4), 573–581. http://doi.org/10.1016/j.aei.2011.07.003

WBDG. (n.d.). No Title. Retrieved June 12, 2016, from https://www.wbdg.org/resources/cobie.php

Werkgroep Leidraad Systems Engineering, ProRail, Rijkswaterstaat, Vereniging van Waterbouwers,
NLingenieurs, BouwendNederland, & UnetoVni. (2013). Leidraad voor Systems Engineering
binnen de GWW-sector, 73.

Zhang, C., Beetz, J., & Vries, B. De. (2013). Towards Model View Definition on Semantic Level : A State
of the Art Review, (July 2015), 1–10.

69

Appendix A Interview ISSO

04-03-2016 Interview with ISSO

Interviewee 1: Rob Van Bergen (Chief Executive Officer)

Motive(s): The party is a neutral and respectable knowledge institution within the installation industry
which prescribes normative guidelines that are widely adapted by the Dutch construction industry.

Goals: This interview is held in order to determine (1) in which way is sensor data used for monitoring
in the construction industry (2) if BIM used during the operations & maintenance phase (3) how
sensor data is being stored and used (4) in which way sensor data is used for (preventive)
maintenance

General questions concerning the construction industry:

1. In which way would you appreciate the level of monitoring for compliance to the agreed output
specifications at your company? Have you ascertained difficulties on this topic?

Interviewee cannot provide a reliable answer.

2. To which extent does Building Information Modeling (BIM) plays a role in monitoring construction
projects?

The use of Building Information Modeling is limited unfortunately: This is because the
operations & maintenance sector is in it’s infancy. This is because the main attention of the
industry was to incorporate BIM in the design and realization phases rather than on the facility
management. The BIM approach has been introduced only 2 or 3 years ago.

Technical questions concerning sensor data:

3. What are the typical characteristics of sensor data (besides being real time and changing
continually)

An important attribute of sensor data is that it is able to let you discover trends and that it
helps you to use this new knowledge to improve workflows in the building.

4. To which extent do sensor data play a role in what way during monitoring of projects.

I think every building has a building management system at the moment. However, it is not
always used for monitoring the performance: This is only done when facility management
parties are obliged by contract. Also, they only use the sets to optimize the building
performance if they are told do so (which is rarely the case).

5. Do sensor data have other purposes besides only monitoring? Could you mention these?

To my understanding I do not think that data is being used in many ways: I think it is used also
used for keeping track of the energy consumption of buildings.

70

6. In which ways are sensor data getting stored (i.e. spreadsheets, relational databases). Is this enough
to reuse this data together with other types of data sets?

 Interviewee cannot provide a reliable answer.

7. Besides sensor related data, do other (external) datasets play a role within the operations &
maintenance phase? If so, which kind of data? If not, why is this the case?

Most of the time they only use sensor data of the environment of the building in order to keep
track / lower energy consumption.

8. To which extent does the construction sector perform preventive maintenance?

Currently, the facility management sector performs corrective measurements based upon the
actual state of the building component.

9. Do you think that there will be need to monitor performance and perform (preventive)
maintenance based upon combinations of different and continuous changing data sets?

I think this would be very interesting, because it would let the management improve work
flows in buildings (as already stated).

71

Appendix B Interview Facilicom

16-03-2016 Interview with Facilicom

Interviewee 1: Gerard Wennekes (Facility coordinator of the Dutch Tax and Customs Administration
(DTCA) in Doetinchem)

Motive(s): The party is a specialized firm in facility management services. They have experience with
several DBFMO- projects like some of the Dutch National Monuments in The Hague.

Goals: This interview is held in order to determine (1) how the process goes for monitoring the
building during this project (2) if BIM is used during the operations & maintenance phase and (3) in
which way sensor data is used for (preventive) maintenance

General questions concerning the monitoring process of this particular DBFMO-project:

1. Which parties are involved during the maintenance and operations phase of DBFMO- projects?
Which activities do the perform.

There are two contractual parties: Central Government Real Estate Agency (CGREA) and the
DTCA.

2. Which actions are performing each of these parties in what order?

The CGREA is concerned with the state of the building (“the hardware”), while the DTCA deals
with the services provided by us (“the software”).

Specific questions concerning the monitoring system (and sensor data)

3. To what extent is BIM used in the facility management industry?

From my experience, I do not think BIM is widely used in this domain. We monitor critical
rooms for abnormal values via the Facility Management Information Model (instead of a BIM
model) based upon data collected by and stored in the building management system.

However, this is not ideal. The knowledge that is built up during the previous design and build
phases is nullified. In order to set up a FMIS we have then to set up the model from scratch
(i.e. importing the drawings) and check if it is the same as the BIM model. Also I think this is a
pity, due to the fact you could use BIM models to query efficiently for sophisticated
information.

4. Other than sensor data, which data sets do you use at the moment for managing the building? If so,
how are these stored and interchanged? If not, why not?

We only user sensor information: We do not have permission for using all generated data due
to the fact that parts of these are confidential.

72

73

Appendix C Interview Strukton (BIM department)

04-03-2016 Interview with Strukton

Interviewee 1: Pepijn van der Vooren (BIM – specialist at the design & realization department)

Motive(s): The company has proven itself for approximately 80 years as a solid construction & civil
company and is therefore a good indicator for the level of knowledge about information management
(in the operations & maintenance phases) within the whole industry in The Netherlands.

Goals: This interview is held in order to determine (1) in which way is sensor data used for monitoring
in the construction industry (2) if BIM used during the operations & maintenance phase (3) if sensor
data being stored and used for other practices (4) in which way sensor data is used for (preventive)
maintenance

General questions concerning the construction industry:

1. In which way would you appreciate the level of monitoring for compliance to the agreed output
specifications at your company? Have you ascertained difficulties on this topic?

Interviewee cannot provide a reliable answer.

2. To which extent does Building Information Modeling (BIM) plays a role in monitoring construction
projects?

BIM plays an essential role within the design and realization phase of our projects. The design
& realization department implements the output specifications within the building model: This
allows to simulate the performance of future buildings and shows us if the as-planned building
meets the requirements.

At the moment the workflow between the design & realization department and the
maintenance & operations department is separated due to the fact that they have their own
data warehouses. Another issue is that these sources are not synchronized. The result is that
the information (i.e. design and monitoring data respectively) of a single project is spread over
multiple distinct data storages, which should not be the case.

This is because BIM usage within the operations & maintenance phase is in its infancy: They
started only a year ago with implementing the BIM approach within their workflow. At the
moment, the facility management data is spread across many (local) databases and
documents (i.e. Excel). Also, the data (CAD or Excel) from sub-contractors is integrated into
these sources manually, due to the fact that both information sources is structured differently.

Technical questions concerning sensor data:

3. What are the typical characteristics of sensor data (besides being real time and changing
continually)

Another typical attribute of sensor data is that (in comparison with other data) these
are diverse: The reason is that we have many sensors which measure each different
variables. For example, we have besides climate sensors also sensors which keep track
of the occupancy of buildings.

74

4. To which extent do sensor data play a role in what way during monitoring of projects.

Interviewee cannot provide a reliable answer.

5. Do sensor data have other purposes besides only monitoring? Could you mention these?

Yes, in our company we use the sensor data to test whether the performance of the as-built
buildings match with the one of the as-designed buildings.

6. In which ways are sensor data getting stored (i.e. spreadsheets, relational databases). Is this
sufficient enough to reuse this data together with other types of data sets?

Currently, the sensor data is getting stored as XML (or gbXML) files into relational databases.
We started with saving our data in this way since only last year. This allows us to read-in the
sensor data in our simulation program. We do not mix data sets together. However, I believe
this will be the future since the rise of Big Data.

7. Besides sensor related data, do other (external) datasets play a role within the operations &
maintenance phase? If so, which kind of data? If not, why is this the case?

Other data sets that are used during the operations & maintenance phase are those of the
subcontractor i.e. durability of building components. Another type is the outside
environmental data (only temperature and the relative humidity level). However even though
this kind of data is considered not as internal general data, this is sensor related data. We do
not use other (external) data sets like i.e. the one of the KNMI.

8. To which extent does Strukton perform preventive maintenance?

We only conduct corrective maintenance based upon historical and current measurements:
For example, we perform maintenance after outliers are observed during monitoring via the
sensors. We do not act upon predictions: However, there are future ideas within the company
about using this types of predictive data.

9. Do you think that there will be need to monitor performance and perform (preventive)
maintenance based upon combinations of different and continuous changing data sets?

Yes, I think this could provide us new insights when performing maintenance. It is thereby
essential that the storage of information or data is integrated as a whole. I believe that the
BIM approach / model should play a central role herein.

75

Appendix D Interview Ministry of Defense

07-03-2016 Interview with Ministry of Defense

Interviewee 1: Richard van Asselt (Facility and Logistics division)

Motive(s): The party is a neutral institution of which a department now takes care of one of the most
enormous DBFMO – projects in The Netherlands.

Goals: This interview is held in order to determine (1) how the process goes for monitoring the
building during this project (2) if BIM is used during the operations & maintenance phase (3) how
sensor data being stored and (re)used (4) in which way sensor data is used for (preventive)
maintenance

General questions concerning the monitoring process of this particular DBFMO-project:

1. Can you tell me if this project is still the most enormous DBFMO- project within The Netherlands?

I don’t know for sure. However, concerning square meters I can tell you that this project is one
of the hugest DBFMO- projects: For example, it is greater than your case study (The National
Military Museum).

2. Which parties are involved during the maintenance and operations phase of DBFMO- projects?

In our case, the Ministry of Defense (which I represent) and a sub-contractor called Comfort is
involved during the maintenance and operations phase. Also we are able to involve third (and
neutral) parties for performance checking. One of these checks is the client satisfaction. We
both hire such party to measure how the performance of the building meets the requirements
of the client.

Furthermore, when revisions (approved by myself) have to be made in the contract the
National Government will be involved. They will implement these changes within the DBFMO-
contract (i.e. changing the associated output specifications) and perform cost-benefit
calculations.

3. Which actions are performing each of these parties in what order?

The contractor takes care of the maintenance. They use their own software to determine
(un)availability which provides the basis for determining their payout. The sent report will
then be analyzed by the National Government for approval. When approved, the National
Government will conduct the required payment transactions.

Specific questions concerning the monitoring system (and sensor data):

4. How is the building management system used? In what way is the information stored?

At the moment they use two systems: one system is for logging (i.e. registration of the
number of visitors) and is probably registering sensor values. the other one is more a planning
tool called Planon for making certain reservations (i.e. for meeting rooms). I don’t know how
the data is stored at the moment.

76

5. Other than sensor data, which data sets do you use at the moment for managing the building? If so,
how are these stored and interchanged? If not, why not?

Yes, we use other data sets as well. They are very diverse (i.e. the number of prints of a
printer during a day) and are stored in several ways across different (local) databases (I don’t
know which type however). Sometimes, I even get the information per e-mail. Because the
information is not synchronized, I am concerned that I do not have control over the building.
For example, I cannot perform analysis for performance enhance of the building. The think I
can do at the moment, is observing “trends” by eye.

General questions concerning the current state of the facility management

6. To which extent does the Ministry of Defense perform preventive maintenance?

Currently, we only perform maintenance based upon the actual state and standardized
preventive maintenance (i.e. we have a 3-monthly schedule for cleaning the windows).
Furthermore, we can check if some things has to be replaced based upon known life
durations.

7. In what ways would you improve the monitoring process? Could you name concrete things that
should be researched?

At the moment we do not have concrete KPI’s. This means it is necessary to check which KPI’s
could be used to monitor the building. Furthermore, the client (and thereby I refer to myself),
does not have a sufficient tool to check the building performance by themselves. At the
moment, I can to this based upon the supplied reports by the contractor.

8. Do you have any ideas how the facility domain will evolve in the near future, particularly concerning
data and information (re)use?

I think that “the more you measure, the more you gain in knowledge”. Thereby it is important
to synchronize the information in order to perform analysis. As already said, I am not able to
do this.

Furthermore, I rely solely on the information by the sub-contractor. If I want to check upon
them I have to measure by hand (i.e. measuring the room temperature via a thermostat). I
think it would be great if I could check upon them in a transparent way. I also think that using
synchronized data, it is possible for the sub-contractor to conduct their tasks more cost-
efficiently.

77

Appendix E Interview Semmtech

18-02-2016 Interview with the Domain Consultancy department of Semmtech

Interviewee 1: Coen Dorge (consultant Domain Consultancy)

Motive(s): The party is a specialized firm in information management and Semantic Web services.

Goals: This interview is held in order to get familiar about how a business process is analyzed in
practice.

General question concerning the monitoring process of a DBFMO-project:

How could a monitoring process be described within a DBFMO- context?

At the moment a verification tool as proposed by this research does not not exist yet for buildings
though it is already implemented in civil projects. However, in respect to the latter case such a
verification tool does not make use of Semantic Web functionalities.

Normally, a verification tool is able to record sensor data automatically as well as data that is asserted
by hand. In regard to the first case, measurements take every time duration which allow the system to
check periodically whether or not the situations complies to the requirements. The associated
database will get notified by the tool, if the situation does not satisfies the specifications. Based upon
these notifications the actual payments are calculated and sent as an invoice to the contractor.

78

79

Appendix F Interview Heijmans

03-03-2016 Interview with Heijmans

Interviewee 1: Laurens Timmerman (Facility Management)
Interviewee 2: Peter Muller (Measurement & Control technology)

Motive(s): Both actors are heavily involved during the maintenance and operations phase of the
provided use case (The National Military Museum)

General questions concerning the National Military Museum:

1. For which objective(s) is (are) sensor data used?

The main purpose is to use the sensor data to check whether the contractor complies to
the agreed output specifications which concern solely the part: 4. Climate conditions.

2. What are the most critical rooms or areas within the National Military Museum?

These spaces which are marked with “B*” (in the overview of the List of Requirements) and are
primarily rooms wherein expositions are installed.

3. To which extent is it possible to configure the HVAC- systems?

The configuration of the HVAC systems is very flexible so the apparatus can be adjusted
locally: It is even possible to just dim only one light spot in a room, while the other ones
remain unimpaired.

Technical questions concerning the Building Management System (BMS):

4. In which way are the inside operations influenced by changes in the (outside) environmental

climate?

The undertaken activities are mainly corrective: So, the outside conditions affect the inside
operations only after changes are occurred. However, the exact relationship has not been
found (yet).

5. To which extent is it possible to conduct preventive maintenance within the museum?

We are not able to perform preventive maintenance (except lighting within the glass
cabinets, because we know the life duration of the lightbulbs). In general, we only perform
corrective maintenance.

However, it would be great if we could predict the values of certain set conditions in order
to perform preventive maintenance and/or decrease energy usage. Namely, this would
decrease the necessity to use extra cooling / heating / ventilation in order to comply to
the requirements.

At the moment, the (change of) the set point for temperature is based upon historic
information (namely, the average of the outside temperature of the last four days) and
not upon future circumstances.

80

6. Which variables are measured as well, besides the already mentioned sensor data?

The only variable that is measured and is not climate related are the number of people
that visit the museum. We keep track of the amount of visitors via the gates near the
entrance. However, we do not incorporate these data into the BMS.

7. Does the monitoring system make use of any other external data set / information source?

No, unfortunately not.

8. What is the relationship between the variables: “temperature”, “comfort (min. and max.

operational temperature) and the set- point temperature?

The required temperature is stated by the operational temperature. We monitor in such a
way that this value keeps within between this range. The set-point temperature is the
overall set temperature within the specific rooms: Fluctuations are compensated by extra
heating or cooling.

9. The values of the sensor data in the database do not contain a separator, like a decimal point or

comma. In which way should the values be interpreted? For example, the data set contains a
temperature value of “209” Celsius degrees.

The values should be interpreted with a separator (comma, point) and therefore be seen
as a decimal- value.

81

Appendix G Interview Strukton (data management department)

17-03-2016 Interview with Strukton

Interviewee 1: Barry Tuip (Specialist at the monitoring & data management division)

Motive(s): The company has proven itself for approximately 80 years as a solid construction & civil
company and are ahead of other construction companies in managing sensor information during the
operations & maintenance phase.

Goals: This interview is held in order to determine (1) in which way is sensor data used for monitoring
in the construction industry (2) if BIM used during the operations & maintenance phase (3) if sensor
data is being collected and stored in which ways and is used for other practices (4) in which way
sensor data is used for (preventive) maintenance

General questions concerning the construction industry:

1. Could you tell me what the state of art is concerning monitoring within the operations and
maintenance phase? What is already accomplished and which future is waiting for this domain?

At the moment there are several trends (i.e. Big Data) of which the facility management could
benefit from. According to numerous literature, almost 70 percent of the utility construction
sector are not functioning correctly: The amount of data is increasing and it is thereby
important to make use of it in an efficient and reliable way. For example, via simulation,
information analytics and building information modeling it is possible to compare as- designed
buildings with as- designed buildings. Furthermore, the performance of the building objects
that do function properly can still be improved with approximately 5-10%.

However, at the moment sensor data is stored in a poor way: Actually only the values are
stored and in order to derive knowledge from it u should annotate the data (with meta data).
As a result, each construction company is annotating (and thereby storing and reusing) the
data in different proprietary ways. At the moment there is no single main standard in how to
store building sensor data (in comparison to the IFC- data model in the design and build
phases).

2. To which extent does Building Information Modeling (BIM) plays a role in monitoring construction
projects?

Currently, the use of BIM is very limited in comparison with the design and build
parties/departments in the construction sector. The reason is that those parties are not
putting more information than is required to meet their own objectives. So, because of the
fact that the facility management sector does not get involved most of the times during the
design and build phase of projects, their needs are not taken into account. BIM- objects are
used only by the facility management firm when the client demands such a model for the
maintenance and operations phase. However, due to the rise of performance based contracts
these parties will probably will get more involved in future projects and will become eventually
a standard as well.

82

Technical questions concerning sensor data:

3. What are the typical characteristics of sensor data (besides being real time and changing
continually)

Other characteristics are the accuracy of the measurements. For example, the building
management system that we use (this system called Priva is used in almost all building
projects) cannot store decimal values. So a temperature of 19.5 ℃ is stored as 195. This
means we have to take into account within in our analysis to divide such values by a factor of
10.

4. How important is sensor data during the monitoring of projects? I.e. Which variables / subjects are
being monitored and is data being collected through sensors?

This depends very much upon the budget of the parties (i.e. the client). For example, for a
project we had to place only 6 sensors in a 6- storey building: Even though it measured
different variables, we could not derive any knowledge from this data in order to enhance its
performance. If parties choose to not use sensors, they can (and will) act based upon only
complaints or questions by the building users.

5. Do sensor data have other purposes besides only monitoring? Could you mention these?

Sensor information is used mainly for monitoring objects. However, It depends very much in
what way you reuse the information that makes the data useful via combining sets or
sophisticated analysis. In doing so, the data can then be reused for various objectives like
energy management, user interaction, maintenance, facility services (i.e. cleaning) and
comfort management.

6. Via which way is these sensor data collected?

You should visualize the process as follows. The Building Management System collects the
sensor data. It has a module which allows it to store the values. Furthermore, the energy data
is collected by (tools of) energy companies while data of elevator is collected by their
manufacturers. Thereby, each source has its ow proprietary protocols and formats.

7. In which ways are sensor data getting stored (i.e. spreadsheets, relational databases) and where
(internet or local)? Who is in charge of this database?

Unfortunately, I do not know the answer to this question. However I can tell that the client is
always the owner.

8. Besides sensor related data, do other (external) datasets play a role within the operations &
maintenance phase? If so, which kind of data? If not, why is this the case? How are these data stored?

Yes, we do use other data sets for our analysis. Examples are the weather data by the KNMI or
the data set of the number of visitors.

9. Are all these data (sensor and other) stored in a central way? If yes, why? If not, why not? How is
the availability (“beschikbaarheid”) of critical rooms checked?

The sensor data is stored within the building management system and can be retrieved which
allows you to perform simple analysis within this environment. Or the company retrieves the

83

sensor data (together with all of the data from various sources) into a so called online local-
central data ware house. Strukton is doing the latter: Once per day. In that central database
we have actually 9 local databases. For each storage the data get annotated (and analyzed) in
a different way. For example, we have a “presentation” and a “analysis” database.

The checking of availability is done by data that is entered (in an automated way) into Facility
Management Information Models which can perform verifications.

10. Does the business process require integration of data sets? If yes, is above mentioned
way of storage methods sufficient to reuse/ integrate data together with other types of data sets?

Yes, according to our standards. We integrate data sets together during our analysis. However,
I do not expect other companies are doing the same yet. By integrating data we can derive
knowledge: After all, it are only data values what you actually are acquiring at first which you
must give meaning in a later stadium.

11. To which extent do firms perform preventive / predictive maintenance?

We perform predictive performance, based upon key figures and statistic models.
Furthermore, we use some form of machine learning principles.

84

85

Appendix H An IfcSpatialStructureElement decomposition

RelatingObject

RelatedObjects

RelatingObject

RelatedObjects

RelatingObject

RelatedObjects

RelatingObject

RelatedObjects

#1=IfcProject

#10=IfcRelAggregates

#3= IfcSite

#4=IfcBuilding

#8=IfcBuildingStorey #9=IfcBuildingStorey

#21=IfcSpace #22=IfcSpace

RelatedObjects

RelatedObjects

#11=IfcRelAggregates

#12=IfcRelAggregates

#13=IfcRelAggregates

A visualization of the breakdown structure of IfcSpatialStructureElement.

86

87

Appendix I The monitoring process within in a DBFMO- project

A BPMN- visualization of the monitoring process within a DBFMO context.

88

89

Appendix J Descriptive analysis of sensor temperature data

Fig J1 A simplified flow chart which explains the undertaken steps to create
a statistic summary of the temperature sensor values.

Thereby, the number refers to the actual script.

Fig. J2 A descriptive analysis of the main characteristics of each room

 Count Mean (°C) Std
(°C)

Min
(°C)

25%
(°C)

50%
(°C)

75%
(°C)

Max
(°C)

Krijgsmachtbrede themaruimte
introductie

8700 20.00 0.29 19.10 19.80 20.00 20.20 20.70

Krijgsmachtbrede themaruimte 1 8700 20.08 0.39 19.00 19.80 20.00 20.30 21.30

Krijgsmachtbrede themaruimte 2 8700 20.09 0.33 19.20 19.90 20.10 20.30 21.10

Krijgsmachtbrede themaruimte
pronkzaal

8700 20.15 0.27 19.40 20.00 20.20 20.30 20.90

Krijgsmachtbrede themaruimte 3 8700 20.16 0.40 19.20 19.90 20.10 20.40 21.30

Krijgsmachtbrede themaruimte 4 8700 19.78 0.26 19.00 19.60 19.80 20.00 20.40

Krijgsmachtbrede themaruimte 5 8700 20.17 0.38 19.30 19.90 20.20 20.40 21.40

Krijgsmachtbrede themaruimte 6 8700 19.08 0.38 17.80 18.90 19.10 19.30 20.10

Average 19.94 .34 19. 19.73 19.94 20.15 20.9

90

91

Appendix K SE information models

Fig. K1 A SE information model of a requirement specification

Fig. K2 A generic SE information model for all identified classes

92

93

Appendix L A SE ontology

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

 <!ENTITY owl2xml "http://www.w3.org/2006/12/owl2-xml#" >

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

 <!ENTITY Ontology1460824241639

"http://www.semanticweb.org/rakesh/ontologies/2016/3/Ontology1460824241639.

owl#" >

]>

<rdf:RDF

xmlns="http://www.semanticweb.org/rakesh/ontologies/2016/3/Ontology14608242

41639.owl#"

xml:base="http://www.semanticweb.org/rakesh/ontologies/2016/3/Ontology14608

24241639.owl"

 xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:Ontology1460824241639="http://www.semanticweb.org/rakesh/ontologies/2

016/3/Ontology1460824241639.owl#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#">

 <owl:Ontology rdf:about=""/>

 <owl:ObjectProperty rdf:about="#categorizedBy">

 <rdfs:range rdf:resource="#Condition"/>

 <rdfs:domain rdf:resource="#Requirement"/>

 <rdfs:subPropertyOf rdf:resource="#topObjectProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#responsibilityFor">

 <rdfs:range rdf:resource="#Organization"/>

 <rdfs:domain rdf:resource="#Requirement"/>

 <rdfs:subPropertyOf rdf:resource="#topObjectProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#specifies">

 <rdfs:range rdf:resource="#Condition"/>

 <rdfs:domain rdf:resource="#Requirement"/>

 <rdfs:subPropertyOf rdf:resource="#topObjectProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#specifiesBoundaries">

 <rdfs:range rdf:resource="#QuantityValue"/>

 <rdfs:domain rdf:resource="#Requirement"/>

 <rdfs:subPropertyOf rdf:resource="#topObjectProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#topObjectProperty"/>

 <owl:DatatypeProperty rdf:about="#hasUnit">

 <rdfs:subPropertyOf rdf:resource="#topDataProperty"/>

 <rdfs:range rdf:resource="&xsd;string"/>

94

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#hasValue">

 <rdfs:subPropertyOf rdf:resource="#topDataProperty"/>

 <rdfs:range rdf:resource="&xsd;float"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#lowerboundary">

 <rdfs:domain rdf:resource="#QuantityValue"/>

 <rdfs:subPropertyOf rdf:resource="#topDataProperty"/>

 <rdfs:range rdf:resource="&xsd;float"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#topDataProperty"/>

 <owl:DatatypeProperty rdf:about="#unit">

 <rdfs:domain rdf:resource="#QuantityValue"/>

 <rdfs:subPropertyOf rdf:resource="#topDataProperty"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:about="#upperBoundary">

 <rdfs:domain rdf:resource="#QuantityValue"/>

 <rdfs:subPropertyOf rdf:resource="#topDataProperty"/>

 <rdfs:range rdf:resource="&xsd;float"/>

 </owl:DatatypeProperty>

 <owl:Class rdf:about="#Condition">

 <rdfs:subClassOf rdf:resource="&owl;Thing"/>

 </owl:Class>

 <owl:Class rdf:about="#Organization">

 <rdfs:subClassOf rdf:resource="&owl;Thing"/>

 </owl:Class>

 <owl:Class rdf:about="#QuantityValue">

 <rdfs:subClassOf rdf:resource="&owl;Thing"/>

 </owl:Class>

 <owl:Class rdf:about="#Requirement">

 <rdfs:subClassOf rdf:resource="&owl;Thing"/>

 </owl:Class>

 <owl:Class rdf:about="#Room">

 <rdfs:subClassOf rdf:resource="&owl;Thing"/>

 </owl:Class>

 <owl:Class rdf:about="&owl;Thing"/>

</rdf:RDF>

95

Appendix M A partial building RDF- graph

?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
 xmlns:express="http://purl.org/voc/express#"
 xmlns:ifcowl="http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1#"
 xmlns:list="http://www.co-ode.org/ontologies/list.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
>
 <rdf:Description rdf:about="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcLocalPlacement_85447">
 <ifcowl:relativePlacement_IfcLocalPlacement
rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcAxis2Placement3D_110625"/>
 <rdf:type rdf:resource="http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1#IfcLocalPlacement"/>
 <ifcowl:placementRelTo_IfcLocalPlacement
rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcLocalPlacement_110222"/>
 </rdf:Description>
 <rdf:Description rdf:about="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcLengthMeasure_List_93304">
 <list:hasContents rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcLengthMeasure_62800"/>
 <list:hasNext rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcLengthMeasure_List_93305"/>
 <rdf:type rdf:resource="http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1#IfcLengthMeasure_List"/>
 </rdf:Description>
 <rdf:Description rdf:about="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcAxis2Placement3D_110390">
 <ifcowl:location_IfcPlacement rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcCartesianPoint_84856"/>
 <rdf:type rdf:resource="http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1#IfcAxis2Placement3D"/>
 <ifcowl:refDirection_IfcAxis2Placement3D
rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcDirection_47672"/>
 <ifcowl:axis_IfcAxis2Placement3D rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcDirection_47670"/>
 </rdf:Description>
 <rdf:Description rdf:about="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcAxis2Placement3D_28886">
 <ifcowl:axis_IfcAxis2Placement3D rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcDirection_2547"/>
 <rdf:type rdf:resource="http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1#IfcAxis2Placement3D"/>
 <ifcowl:refDirection_IfcAxis2Placement3D
rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcDirection_2549"/>
 <ifcowl:location_IfcPlacement rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcCartesianPoint_28880"/>
 </rdf:Description>
 <rdf:Description rdf:about="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcRepresentation_List_69693">
 <rdf:type rdf:resource="http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1#IfcRepresentation_List"/>
 <list:hasContents rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcShapeRepresentation_25910"/>
 </rdf:Description>

<rdf:Description rdf:about="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcExtrudedAreaSolid_28135">
 <ifcowl:extrudedDirection_IfcExtrudedAreaSolid
rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcDirection_19"/>
 <rdf:type rdf:resource="http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1#IfcExtrudedAreaSolid"/>
 <ifcowl:depth_IfcExtrudedAreaSolid
rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcPositiveLengthMeasure_59185"/>
 <ifcowl:position_IfcSweptAreaSolid
rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcAxis2Placement3D_1801"/>
 <ifcowl:sweptArea_IfcSweptAreaSolid
rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcIShapeProfileDef_28133"/>
 </rdf:Description>
 <rdf:Description rdf:about="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcSpace_346">
 <ifcowl:representation_IfcProduct
rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcProductDefinitionShape_344"/>
 <ifcowl:longName_IfcSpatialStructureElement
rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcLabel_58277"/>
 <ifcowl:compositionType_IfcSpatialStructureElement rdf:resource="http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1#ELEMENT"/>
 <ifcowl:name_IfcRoot rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcLabel_58276"/>
 <ifcowl:globalId_IfcRoot rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcGloballyUniqueId_58275"/>
 <ifcowl:interiorOrExteriorSpace_IfcSpace rdf:resource="http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1#INTERNAL"/>
 <ifcowl:ownerHistory_IfcRoot rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcOwnerHistory_41"/>
 <ifcowl:objectPlacement_IfcProduct
rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcLocalPlacement_333"/>
 <rdf:type rdf:resource="http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1#IfcSpace"/>
 </rdf:Description>
 <rdf:Description rdf:about="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcMember_62024">
 <ifcowl:globalId_IfcRoot rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcGloballyUniqueId_85304"/>
 <ifcowl:representation_IfcProduct
rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcProductDefinitionShape_62014"/>

96

 <rdf:type rdf:resource="http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1#IfcMember"/>
 <ifcowl:name_IfcRoot rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcLabel_85305"/>
 <ifcowl:objectPlacement_IfcProduct
rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcLocalPlacement_62023"/>
 <ifcowl:ownerHistory_IfcRoot rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcOwnerHistory_41"/>
 <ifcowl:objectType_IfcObject rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcLabel_59179"/>
 <ifcowl:tag_IfcElement rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcIdentifier_85306"/>
 </rdf:Description>
 <rdf:Description rdf:about="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcRelDefinesByProperties_59562">
 <ifcowl:globalId_IfcRoot rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcGloballyUniqueId_84252"/>
 <rdf:type rdf:resource="http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1#IfcRelDefinesByProperties"/>
 <ifcowl:ownerHistory_IfcRoot rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcOwnerHistory_41"/>
 <ifcowl:relatingPropertyDefinition_IfcRelDefinesByProperties
rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcPropertySet_59560"/>
 <ifcowl:relatedObjects_IfcRelDefines rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcMember_59556"/>
 </rdf:Description>
 <rdf:Description rdf:about="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcLocalPlacement_57497">
 <ifcowl:placementRelTo_IfcLocalPlacement
rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcLocalPlacement_102494"/>
 <rdf:type rdf:resource="http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1#IfcLocalPlacement"/>
 <ifcowl:relativePlacement_IfcLocalPlacement
rdf:resource="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcAxis2Placement3D_102855"/>
 </rdf:Description>

97

Appendix N Flowcharts for data transformation and conversion

Fig. N1 A simplified flow chart which depicts
cleansing and transformation procedures
The numbers refer parts of the programming
code. Thereby, the number refers to the actual
script.

Fig. N2 A simplified flow chart which depicts
the CSV to RDF conversion. The numbers refer
parts of the programming code. Thereby, the
number refers to the actual script.

98

99

Appendix O A script for sensor data transformation

import pandas as pd
import uuid
from pandas import DataFrame

import datetime
import pandas.io.data
from scipy.stats.mstats import mode
import numpy as np
import matplotlib.pyplot as plt

import glob

#0.0 Read Excel
df = pd.read_excel(r'INTRO.xlsx', sheetname = "INTRO")

#0.1 Divide values
df["Waarde"] = df["Waarde"].values/10.0

#0.2 Create statistic summary
statistic_summary = df.describe()

#1.0 Delete columns
df = df.drop(["AangevuldeData", "DataGemist","IntervalGewijzigd"], axis=1)

#1.1 Rename Excel- column headers
headers = {"Systeemtijd":"inXSDDateTime", "Waarde":"numericValue"}

#1.2 Rename column headers
for old, new in headers.iteritems():
 df=df.rename(columns = {old:new})

#1.3 Create a list which holds lists holding: column index, column header, column
values (URIS)
ssn_table = []
ssn_table.append([0, "observedBy", "http://example.com/id/Sensor/SensorName"])
ssn_table.append([1, "hasLocation", "http://example.com/id/PhysicalPlace/RoomName"])
ssn_table.append([2, "observationSamplingTime", "http://example.com/id/Instant/"])
ssn_table.append([4, "observationResult", "http://example.com/id/SensorOutput/"])
ssn_table.append([5, "hasValue", "http://example.com/id/ObservationValue/"])
ssn_table.append([7 , "unit", "http://example.com/id/Unit/CelsiusDegrees"])
ssn_table.append([8 , "observedProperty", "http://dbpedia.org/resource/temperature"])
ssn_table.append([9, "featureOfInterest", "http://dbpedia.org/resource/air"])

#1.4 Add columns to Excel file
for x in ssn_table:
 index = x[0]
 column_header = x[1]
 value = x[2]
 df.insert(index, column_header, value)

#1.5 Create pointer variables to columns having URI's
column_indices = [2, 3, 4]

#Loop 3 times whereby the following actions are performed
 #1.6 Creation of a list holding random GUID values
 #1.7 Creation of a column from this list
 #1.8 Concatenation of the URIs with the GUIDs
for number in range(3):

100

 column_list_index = column_indices[number]
 column_header = ssn_table[column_list_index][1]

 sLength = len(df['observedBy'])
 bucket_of_guids = []
 del bucket_of_guids[:]

 for xx in range(sLength):
 guid = str(uuid.uuid1())
 bucket_of_guids.append((guid))

 df[str(number)] = pd.Series(bucket_of_guids, index=df.index)
 df[column_header] = df[column_header].map(str) + df[str(number)]

1.9 Deletion of the columns holding the GUIDS
df = df.drop(["0", "1", "2"], axis=1)

#1.10 Write to new Excel file
writer = pd.ExcelWriter('T6_OUTPUT.xlsx')
df.to_excel(writer, sheet_name='Sheet1', index = False)
writer.save()

#1.11 Write to new CSV file
df.to_csv("PRO_OUTPUT.csv", index = False)

#NOTE: A check if every read Excel contains the same number of rows (1320)
row_count = len(df.index)
print (row_count)

101

Appendix P A script for SE data transformation

import pandas as pd
import uuid

import glob

#0.0 Read Excel
df = pd.read_excel(r'se_requirements_definitief.xlsx', sheetname =
"se_requirements_definitief")

#Loop 3 times whereby the following actions are performed
 #0.1 Creation of a list holding random GUID values
 #0.2 Creation of a column from this list
 #0.3 Concatenation of the URIs with the GUIDs
bucket_of_guids = []
sLength = len(df['specifies'])
for xx in range(sLength):
 guid = str(uuid.uuid1())
 bucket_of_guids.append((guid))
df["guids"] = pd.Series(bucket_of_guids, index=df.index)
df["specifiesBoundaries"] = df["specifiesBoundaries"].map(str) + df["guids"]

#0.4 Deletion of the columns holding the GUIDS
df = df.drop(["guids"], axis=1)

#0.5 Write to new Excel file
writer = pd.ExcelWriter('se_requirements_definitief_OUTPUT.xlsx')
df.to_excel(writer, sheet_name='Sheet1', index = False)
writer.save()

#0.6 Write to new CSV file
df.to_csv("se_requirements_definitief_OUTPUT.csv", index = False)

102

103

Appendix Q Partial tabular data transformation results

observedBy hasLocation

http://example.com/id/Sensor/OS12GRFMET115 http://example.com/id/PhysicalPlace/KrijgsmachtbredeThemaruimteIntroductie

http://example.com/id/Sensor/OS12GRFMET115 http://example.com/id/PhysicalPlace/KrijgsmachtbredeThemaruimteIntroductie

observationSamplingTime inXSDDateTime

http://example.com/id/Instant/338d0dae-1d9a-11e6-83f6-240a64020db4 2016-02-01T00:04:00

http://example.com/id/Instant/338d34c0-1d9a-11e6-a84e-240a64020db4 2016-02-01T00:12:00

observationResult hasValue

http://example.com/id/SensorOutput/33976df0-1d9a-11e6-932c-
240a64020db4

http://example.com/id/ObservationValue/339ff970-1d9a-11e6-9379-
240a64020db4

http://example.com/id/SensorOutput/33976df0-1d9a-11e6-9eca-
240a64020db4

http://example.com/id/ObservationValue/33a02080-1d9a-11e6-
8215-240a64020db4

numericValue unit

20.1 http://example.com/id/Unit/CelsiusDegrees

20.1 http://example.com/id/Unit/CelsiusDegrees

Fig. Q1 A part of the transformed (and enriched) sensor data set which now can be used for the data
conversion.

specifies categorizedBy

http://example.com/id/Room/Intro-Experience http://example.com/id/Condition/ThermischComfortVerblijfsruimten

http://example.com/id/Room/Hoofdthema1NederlandEnDeWereld http://example.com/id/Condition/ThermischComfortVerblijfsruimten

http://example.com/id/Room/Hoofdthema2DeWereldVanDeKrijgsmacht http://example.com/id/Condition/ThermischComfortVerblijfsruimten

http://example.com/id/Room/Pronkzaal http://example.com/id/Condition/ThermischComfortVerblijfsruimten

http://example.com/id/Room/Hoofdthema3MilitairenInDeSchijnwerpers http://example.com/id/Condition/ThermischComfortVerblijfsruimten

http://example.com/id/Room/Hoofdthema4DeWereldVanDeTechniek http://example.com/id/Condition/ThermischComfortVerblijfsruimten

specifiesBoundaries Lower
Boundary

Upper
Boundary

unit responsibilityFor

http://example.com/id/QuantityValue/1ac88651-1a94-
11e6-888b-240a64020db4

18 25 Celcius http://example.com/id/Organization/Heijmans

http://example.com/id/QuantityValue/1ac88651-1a94-
11e6-8754-240a64020db4

18 25 Celcius http://example.com/id/Organization/Heijmans

http://example.com/id/QuantityValue/1ac88651-1a94-
11e6-be97-240a64020db4

18 25 Celcius http://example.com/id/Organization/Heijmans

http://example.com/id/QuantityValue/1ac88651-1a94-
11e6-b309-240a64020db4

18 25 Celcius http://example.com/id/Organization/Heijmans

http://example.com/id/QuantityValue/1ac88651-1a94-
11e6-8a89-240a64020db4

18 25 Celcius http://example.com/id/Organization/Heijmans

http://example.com/id/QuantityValue/1ac88651-1a94-
11e6-b384-240a64020db4

18 25 Celcius http://example.com/id/Organization/Heijmans

Fig. Q2 A part of the the transformed (and enriched) SE data set which now can be used for the data
conversion.

observedProperty featureOfInterest

http://dbpedia.org/resource/temperature http://dbpedia.org/resource/air

http://dbpedia.org/resource/temperature http://dbpedia.org/resource/air

http://example.com/id/Sensor/OS12GRFMET115
http://example.com/id/PhysicalPlace/KrijgsmachtbredeThemaruimteIntroductie
http://example.com/id/Sensor/OS12GRFMET115
http://example.com/id/PhysicalPlace/KrijgsmachtbredeThemaruimteIntroductie
http://example.com/id/Instant/338d0dae-1d9a-11e6-83f6-240a64020db4
http://example.com/id/Instant/338d34c0-1d9a-11e6-a84e-240a64020db4
http://example.com/id/SensorOutput/33976df0-1d9a-11e6-932c-240a64020db4
http://example.com/id/SensorOutput/33976df0-1d9a-11e6-932c-240a64020db4
http://example.com/id/ObservationValue/339ff970-1d9a-11e6-9379-240a64020db4
http://example.com/id/ObservationValue/339ff970-1d9a-11e6-9379-240a64020db4
http://example.com/id/SensorOutput/33976df0-1d9a-11e6-9eca-240a64020db4
http://example.com/id/SensorOutput/33976df0-1d9a-11e6-9eca-240a64020db4
http://example.com/id/ObservationValue/33a02080-1d9a-11e6-8215-240a64020db4
http://example.com/id/ObservationValue/33a02080-1d9a-11e6-8215-240a64020db4
http://example.com/id/Unit/CelsiusDegrees
http://example.com/id/Unit/CelsiusDegrees
http://example.com/id/Room/Intro-Experience
http://example.com/id/Condition/ThermischComfortVerblijfsruimten
http://example.com/id/Room/Hoofdthema1NederlandEnDeWereld
http://example.com/id/Condition/ThermischComfortVerblijfsruimten
http://example.com/id/Room/Hoofdthema2DeWereldVanDeKrijgsmacht
http://example.com/id/Condition/ThermischComfortVerblijfsruimten
http://example.com/id/Room/Pronkzaal
http://example.com/id/Condition/ThermischComfortVerblijfsruimten
http://example.com/id/Room/Hoofdthema3MilitairenInDeSchijnwerpers
http://example.com/id/Condition/ThermischComfortVerblijfsruimten
http://example.com/id/Room/Hoofdthema4DeWereldVanDeTechniek
http://example.com/id/Condition/ThermischComfortVerblijfsruimten
http://example.com/id/QuantityValue/1ac88651-1a94-11e6-888b-240a64020db4
http://example.com/id/QuantityValue/1ac88651-1a94-11e6-888b-240a64020db4
http://example.com/id/Organization/Heijmans
http://example.com/id/QuantityValue/1ac88651-1a94-11e6-8754-240a64020db4
http://example.com/id/QuantityValue/1ac88651-1a94-11e6-8754-240a64020db4
http://example.com/id/Organization/Heijmans
http://example.com/id/QuantityValue/1ac88651-1a94-11e6-be97-240a64020db4
http://example.com/id/QuantityValue/1ac88651-1a94-11e6-be97-240a64020db4
http://example.com/id/Organization/Heijmans
http://example.com/id/QuantityValue/1ac88651-1a94-11e6-b309-240a64020db4
http://example.com/id/QuantityValue/1ac88651-1a94-11e6-b309-240a64020db4
http://example.com/id/Organization/Heijmans
http://example.com/id/QuantityValue/1ac88651-1a94-11e6-8a89-240a64020db4
http://example.com/id/QuantityValue/1ac88651-1a94-11e6-8a89-240a64020db4
http://example.com/id/Organization/Heijmans
http://example.com/id/QuantityValue/1ac88651-1a94-11e6-b384-240a64020db4
http://example.com/id/QuantityValue/1ac88651-1a94-11e6-b384-240a64020db4
http://example.com/id/Organization/Heijmans
http://dbpedia.org/resource/temperature
http://dbpedia.org/resource/air
http://dbpedia.org/resource/temperature
http://dbpedia.org/resource/air

104

105

Appendix R JSON Linked Data for sensor data conversion

{
 "@id" : "http://semmtech.nl/ssn/csvw.csv",
 "@context": ["http://www.w3.org/ns/csvw",
 {
 "@language": "en",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "dcterms": "http://purl.org/dc/terms/",
 "ssn":"http://purl.oclc.org/NET/ssnx/ssn#",
 "time": "http://www.w3.org/2006/time#",
 "qudt":"http://qudt.org/schema/qudt#",
 "dul":
"http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#"
 }
],
 "delimiter": ";",
 "@type":["Table","dcat:DataSet"],
 "url": "http://semmtech.nl/ssn/csvw.csv",
 "dcterms:title": "SSN sample",
 "dcterms:description": "A ssn sample table",
 "dcterms:keywords": ["ssn","sample"],
 "dcterms:modified": "2016-04-17",

 "tableSchema": {
 "columns": [
 {
 "name": "observedBy",
 "title": "observedBy",
 "dcterms:description": "A sensor id",
 "propertyUrl": "ssn:observedBy",
 "required": true
 },
 {
 "name": "hasLocation",
 "title": "hasLocation",
 "dcterms:description": "The room where the sensor is
located",
 "propertyUrl": "ssn:hasLocation",
 "required": true
 },
 {
 "name": "observationSamplingTime",
 "title": "observationSamplingTime",
 "dcterms:description": "A timestamp id of an
observation",
 "propertyUrl": "ssn:observationSamplingTime",
 "required": true
 },
 {
 "name": "inXSDDateTime",
 "title": "inXSDDateTime",
 "dcterms:description": "The numerical timestamp of an
observation",
 "datatype": "xsd:dateTime",
 "propertyUrl": "time:inXSDDateTime",
 "required": true

 },
 {
 "name": "observationResult",
 "title": "observationResult",
 "dcterms:description": "The result of an observation",
 "propertyUrl": "ssn:observationResult",
 "required": true
 },
 {
 "name": "hasValue",
 "title": "hasValue",
 "dcterms:description": "The pointer to the URI which
holds the numerical value of an observation",
 "propertyUrl": "ssn:hasValue",
 "required": true
 },
 {
 "name": "numericValue",
 "title": "numericValue",
 "dcterms:description": "The numerical value of an
observation",
 "datatype": "xsd:double",
 "propertyUrl": "qudt:numericValue",
 "required": true
 },
 {
 "name": "unit",
 "title": "unit",
 "dcterms:description": "The unit in which an observation
is expressed",
 "propertyUrl": "qudt:unit",
 "required": true
 },
 {
 "name": "observedProperty",
 "title": "observedProperty",
 "dcterms:description": "The observed property of a
feature of interest.",
 "propertyUrl": "ssn:observedProperty",
 "required": true
 },
 {
 "name": "featureOfInterest",
 "title": "featureOfInterest",
 "dcterms:description": "The feature of an observed
property",
 "propertyUrl": "ssn:featureOfInterest",
 "required": true
 }],
 "primaryKey": ["observationSamplingTime"],

"aboutUrl":"http://semmtech.nl/ssn/csvw.csv/Observation.{_ro
w}"
 }
 }

106

107

Appendix S JSON Linked Data for SE data conversion

{
 "@id" : "http://semmtech.nl/se/csvw.csv",
 "@context": ["http://www.w3.org/ns/csvw",
 {
 "@language": "en",
 "xsd" : "http://www.w3.org/2001/XMLSchema#",
 "dcterms" : "http://purl.org/dc/terms/",
 "se":"http://semmtech.nl/se/ontology/"
 }
],
 "delimiter": ";",
 "@type":["Table","dcat:DataSet"],
 "url": "http://semmtech.nl/se/csvw.csv",
 "dcterms:title": "SE sample",
 "dcterms:description": "A SE sample table",
 "dcterms:keywords": ["Systems Engineering","sample"],
 "dcterms:modified": "2016-04-19",

 "tableSchema": {
 "columns": [
 {
 "name": "categorizedBy",
 "title": "categorizedBy",
 "dcterms:description": "A certain condition mentioned in
a program of requirements",
 "propertyUrl": "se:categorizedBy",
 "required": true
 },

 {
 "name": "specifies",
 "title": "specifies",
 "dcterms:description": "Points to a room",
 "propertyUrl": "se:specifies",
 "required": true
 },

 {
 "name": "specifiesBoundaries",
 "title": "specifiesBoundaries",
 "dcterms:description": "Points to the boundaries of a
requirement",
 "propertyUrl": "se:specifiesBoundaries",
 "required": true
 },

 {
 "name": "lowerBoundary",
 "title": "lowerBoundary",
 "dcterms:description": "Points to the numerical value of a
 lower bound",
 "datatype": "xsd:double",
 "propertyUrl": "se:lowerBoundary",
 "required": true
 },

 {
 "name": "upperBoundary",
 "title": "upperBoundary",
 "dcterms:description": "Points to the numerical value of a
 bound",
 "datatype": "xsd:double",
 "propertyUrl": "se:upperBoundary",
 "required": true
 },

 {
 "name": "unit",

 "title": "unit",
 "dcterms:description": "The unit of the bounds",
 "datatype": "xsd:string",
 "propertyUrl": "se:unit",
 "required": true
 },

 {
 "name": "responsibilityFor",
 "title": "responsibilityFor",
 "dcterms:description": "The party which is responsible
 for compliance of a condition to a requirement",
 "propertyUrl": "se:responsibilityFor",
 "required": true
 }

],
 "primaryKey": ["Requirement"],
 "aboutUrl":"http://example.com/id/Requirement/{_row}"
 }
 }

108

109

Appendix T A script for sensor data conversion

from rdflib import Graph, Literal, URIRef, Namespace,OWL, XSD, RDF, RDFS, BNode
import csv
import urllib
import re
import uuid
from operator import itemgetter
import sys

from rdflib import Graph, plugin
from rdflib.serializer import Serializer

MAX_LINES_TO_PROCESS = -1

CSVW = Namespace("http://www.w3.org/ns/csvw#")
DCAT = Namespace("http://www.w3.org/ns/dcat#")
DC = Namespace("http://purl.org/dc/terms/")
SSN = Namespace("http://purl.oclc.org/NET/ssnx/ssn#")
TIME = Namespace("http://www.w3.org/2006/time#")
QUDT = Namespace("http://qudt.org/schema/qudt#")
DUL = Namespace("http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#")

class CSVWtoRDF:
 '''
 Provides operation to add triples extracted from CSV files using an implementation
of a subset of the
 CSV on the Web standard to a provided Graph.
 Assumptions on the input files:
 * CSVW meta file is provided as JSON-LD serialisation
 * if not specified otherwise, loadCSW() looks for the CSVW meta file for
'/path/to/input.csv' at
 '/path/to/input.csv.csvw'
 * the CSVW meta description RDF graph contains exactly one resource where the a
suffix of the IRI is identical
 to the filename of the provided CSV input and this resource is the 'root' of
the CSVW mapping description
 (otherwise, provide the resource name explicitly using the mappingResouceIRI
parameter of the constructor)
 * only the CSVW datatype definitins 'anyURI', 'string' and 'double' are supported
at the moment
 creators: Brian Walshe (Trinity College Dublin, KDEG)
 Markus Ackermann (University Leipzig, AKSW)
 '''
 def __init__(self, rdfGraph):
 self.graph = rdfGraph

#Add ".csvw" to the .csv if no .csvw is provided
 def loadCSVW(self, csvFilename, csvwFilename=None, mappingResourceIRI=None):

 if csvwFilename == None:
 csvwFilename = csvFilename + ".csvw"

#2.0.0 Initialize a graph
 self.graph.parse(csvwFilename, format='json-ld')
#2.0.1 Create a meta- graph
 self.graph.serialize(open("metadata.rdf", "w"), "xml")

#2.0.2 Find IRI (=subject) of the JSDON-LD table
 tableNode = self.graph.value(predicate=RDF.type, object=CSVW.Table)
#2.0.3 Find the denoted csv delimiter in the json-ld table
 delim = self.graph.value(tableNode, CSVW.delimiter)

110

#2.0.4 Read the csv data
 csvFile = open(csvFilename, "r")
 csvData = csv.reader(csvFile, delimiter=str(delim))
#2.0.5 Get the object which represent the characteristics of the json-ld model
 schemaRes = self.graph.value(tableNode, CSVW.tableSchema)
#2.0.6 Create triples from the json-ld that describe the csv data in general
 dcatNode = BNode()
 self.graph.add((dcatNode, RDF.type, DCAT.Distribution))
 self.graph.add((dcatNode, DCAT.downloadURL, URIRef(csvFilename)))
 self.graph.add((tableNode, DCAT.distribution, dcatNode))

#2.1.0 List the column names
 mappedColumnsNames = []
#2.1.1 List the columnnames together with their datatypes
 datatypeForColumn = dict()
#2.1.2 List the columnnames together with their URI (propertyUrl)
 propertyForColumn = dict()
 columnList = self.graph.value(schemaRes, CSVW.column)
#2.1.3 set up for iteration through rdf:rest
 while columnList != None and self.graph.value(columnList, RDF.first)!=None:
#2.1.4 Get the column description (via rdf:first)
 column = self.graph.value(columnList, RDF.first)
#2.1.5 Get the columName from the column description
 columnName = self.graph.value(column, CSVW.name)
#2.1.6 Get the propertyURL (URI) of the column description
 propertyRes = self.graph.value(column, CSVW.propertyUrl)
#2.1.7 State that the propertyURL (URI) is of RDF:property
 # self.graph.add((propertyRes, RDF.type, RDF.Property))
#2.1.8 Create a triple stating a rdfs:label
 if self.graph.value(column, CSVW.title) != None:
 self.graph.add((propertyRes, RDFS.label, self.graph.objects(column,
CSVW.title)))
#2.1.9 Create a triple stating a dc:description
 if self.graph.value(column, DC.description) != None:
 self.graph.add((propertyRes, DC.description, self.graph.value(column,
DC.description)))
#2.1.10 Adding values to the previous defined list/dictionaries as follows:
 #(1)add column name
 #(2)add pairs with columnname(name) and datatype (value)
 #(3)add column names using propertyURL
 mappedColumnsNames += columnName
 datatypeForColumn[str(columnName)] = str(self.graph.value(column,
CSVW.datatype))
 propertyForColumn[str(columnName)] = propertyRes
#2.1.11 Go to the next column description (rdf:rest)
 columnList = self.graph.value(columnList, RDF.rest)

#2.2 Store aboutURL of the json-ld table into a variable
 urlTemplate = self.graph.value(schemaRes, CSVW.aboutUrl)

#2.3 Slice the URI in three parts
 groups = re.match("^(.*?)\{([A-Za-z0-9\-_]+)\}(.*)$", urlTemplate)
 # pre = http://semmtech.nl/ssn/csvw.csv/Observation
 pre = groups.group(1)
 # post = none
 post = groups.group(3)
 # nameCol = ".{_row}"
 nameCol = groups.group(2)

#2.4 Store all csv column headers in variable
 csvHeader = csvData.next()

111

#2.5 Map numerical csv column indexes to each csvHeader
 cellname2Index = self._cellToIndexMapping(csvHeader)
 idIndex=-1

#not relevant in this case
 if nameCol!="_row":
 idIndex = csvHeader.index(nameCol)

#2.6.0 Iterate over each observation in the csv data
 linesRead = 0
 for line in csvData:
 linesRead += 1
#2.6.1 Create a GUID for each observation
 id_fragment = str(uuid.uuid1())
 if idIndex!=-1:
 id_fragment = urllib.quote_plus(line[idIndex])
 subject = URIRef("%s%s%s" % (pre, id_fragment, post))
#2.6.2 Create row instance
 self.graph.add((tableNode, CSVW.row, subject))
#2.6.3 Map a row to the Observation concept
 self.graph.add((subject, RDF.type, SSN.Observation))
#2.6.4 Create a dictionary for mapping the data instances to a concept
 mapping = {
 "Sensor": "http://purl.oclc.org/NET/ssnx/ssn#Sensor",
 "Instant": "http://www.w3.org/2006/time#Instant",
 "SensorOutput":
"http://purl.oclc.org/NET/ssnx/ssn#SensorOutput",
 "ObservationValue":
"http://purl.oclc.org/NET/ssnx/ssn#ObservationValue",
 "Temperatuur": "http://purl.oclc.org/NET/ssnx/ssn#Property",
 "Q7391292":
"http://purl.oclc.org/NET/ssnx/ssn#FeatureOfInterest",
 "PhysicalPlace" :
"http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#PhysicalPlace",
 "Unit" : "http://data.nasa.gov/qudt/owl/unit#DegreeCelsius",
 }
#2.6.5 For each cell value of a csv row, define a standard subject
 for cellname, i in cellname2Index.items():
 #print (cellname2Index.items())
 subject = URIRef("%s%s%s" % (pre, id_fragment, post))
#not relevant in this case
 if cellname not in propertyForColumn.keys():
 #print "no hit for (%s)"%cellname
 continue
#2.6.6 Redefine standard subject based upon csv column header
 if cellname == "hasValue":
#subject = URIRef(SSN.SensorOutput)
#subject = URIRef("%s/%s%s" % (SSN.SensorOutput, id_fragment, post))
#subject = self.makeObject(datatypeForColumn["observationResult"], line[2])
 subject = URIRef(line[4])
 elif cellname == "numericValue":
 subject = URIRef(line[5])
 elif cellname == "unit":
 subject = URIRef(line[5])
 elif cellname == "inXSDDateTime":
 subject = URIRef(line[2])
 elif cellname == "hasLocation":
 subject = URIRef(line[0])
#2.6.7 Define a property based upon csv column header
 predicate = propertyForColumn[cellname]

112

#2.6.8 Get + define a object as a URI or literal
 if "/" in line[i]:
 obj = URIRef(line[i])
 else:
 obj = self.makeObject(datatypeForColumn[cellname], line[i])
 #if cellname == "hasValue":
 # obj = URIRef(line[4])
 #if cellname == "hasQuantityValue":
 # obj = URIRef(line[5])
#2.6.9 Add a RDF- data instance to the graph
 self.graph.add((subject, predicate, obj))
#2.6.10 Check + Map a RDF-instance to a concept
 concept_URI = ""
 if "/" in str(obj):
 concept = obj.split('/')[4]
 if concept in mapping.keys():
 concept_URI = (mapping.get(concept))
#2.6.11 Add a RDF-type to the graph
 self.graph.add((URIRef(obj), RDF.type, URIRef(concept_URI)))
 if concept == "ObservationValue":
 self.graph.add((URIRef(obj), RDF.type,
URIRef(QUDT.QuantityValue)))
 if(MAX_LINES_TO_PROCESS > 0 and linesRead >= MAX_LINES_TO_PROCESS): break

 def _cellToIndexMapping(self, csvHeader):

 return dict(zip(csvHeader, range(0, len(csvHeader))))

def _sanitizeSID(self, sid):
return sid.replace('_', '-')

 def makeObject(self, datatypeStr, val):
 if datatypeStr == "anyURI":
 return URIRef(val)
 else:
 return Literal(val, datatype=datatypeStr)

 def printN3(self):
 print(self.graph.serialize(format='n3'))

 def writeToFile(self, fileName, format="xml"):
 self.graph.serialize(open(fileName, "w"), format)

#2.7 Write to a rdf file
g = Graph()
converter = CSVWtoRDF(g)
converter.loadCSVW("T5_INPUT_CSV_dummy_lower.csv")
converter.writeToFile("T5_INPUT_CSV_dummy_lower.rdf")

113

Appendix U A script for SE data conversion

from rdflib import Graph, Literal, URIRef, Namespace, XSD, RDF,OWL, RDFS, BNode
import csv
import urllib
import re
import uuid
from operator import itemgetter
import sys

from rdflib import Graph, plugin
from rdflib.serializer import Serializer

MAX_LINES_TO_PROCESS = -1

CSVW = Namespace("http://www.w3.org/ns/csvw#")
DCAT = Namespace("http://www.w3.org/ns/dcat#")
DC = Namespace("http://purl.org/dc/terms/")
SE = Namespace("http://semmtech.nl/se/ontology/")
class CSVWtoRDF:
 '''
 Provides operation to add triples extracted from CSV files using an implementation
of a subset of the
 CSV on the Web standard to a provided Graph.
 Assumptions on the input files:
 * CSVW meta file is provided as JSON-LD serialisation
 * if not specified otherwise, loadCSW() looks for the CSVW meta file for
'/path/to/input.csv' at
 '/path/to/input.csv.csvw'
 * the CSVW meta description RDF graph contains exactly one resource where the a
suffix of the IRI is identical
 to the filename of the provided CSV input and this resource is the 'root' of
the CSVW mapping description
 (otherwise, provide the resource name explicitly using the mappingResouceIRI
parameter of the constructor)
 * only the CSVW datatype definitins 'anyURI', 'string' and 'double' are supported
at the moment
 creators: Brian Walshe (Trinity College Dublin, KDEG)
 Markus Ackermann (University Leipzig, AKSW)
 '''
 def __init__(self, rdfGraph):
 self.graph = rdfGraph

#Provide the parameters in order to construct the function
 def loadCSVW(self, csvFilename, csvwFilename=None, mappingResourceIRI=None):

 if csvwFilename == None:
 csvwFilename = csvFilename + ".csvw"

#2.0.0 Initialize a graph
 #csvwLD = Graph().parse(csvwFilename, format='json-ld')
 self.graph.parse(csvwFilename, format='json-ld')
#2.0.1 Create a meta- graph
 self.graph.serialize(open("metadata.rdf", "w"), "xml")
#2.0.2 Find IRI (=subject) of the JSDON-LD table
 tableNode = self.graph.value(predicate=RDF.type, object=CSVW.Table)
#2.0.3 Find the denoted csv delimiter in the json-ld table
 delim = self.graph.value(tableNode, CSVW.delimiter)
#2.0.4 Read the csv data
 csvFile = open(csvFilename, "r")
 csvData = csv.reader(csvFile, delimiter=str(delim))

114

#2.0.5 Get the object which represent the characteristics of the json-ld model
 schemaRes = self.graph.value(tableNode, CSVW.tableSchema)
#2.0.6 Create triples from the json-ld that describe the csv data in general
 dcatNode = BNode()
 self.graph.add((dcatNode, RDF.type, DCAT.Distribution))
 self.graph.add((dcatNode, DCAT.downloadURL, URIRef(csvFilename)))
 self.graph.add((tableNode, DCAT.distribution, dcatNode))

#2.1.0 List the column names
 mappedColumnsNames = []
#2.1.1 List the columnnames together with their datatypes
 datatypeForColumn = dict()
#2.1.2 List the columnnames together with their URI (propertyUrl)
 propertyForColumn = dict()
 columnList = self.graph.value(schemaRes, CSVW.column)
#2.1.3 set up for iteration through rdf:rest
 while columnList != None and self.graph.value(columnList, RDF.first)!=None:
#2.1.4 Get the column description (via rdf:first)
 column = self.graph.value(columnList, RDF.first)
#2.1.5 Get the columName from the column description
 columnName = self.graph.value(column, CSVW.name)
#2.1.6 Get the propertyURL (URI) of the column description
 propertyRes = self.graph.value(column, CSVW.propertyUrl)
#2.1.7 State that the propertyURL (URI) is of RDF:property
 # self.graph.add((propertyRes, RDF.type, RDF.Property))
#2.1.8 Create a triple stating a rdfs:label
 if self.graph.value(column, CSVW.title) != None:
 self.graph.add((propertyRes, RDFS.label, self.graph.objects(column,
CSVW.title)))
#2.1.9 Create a triple stating a dc:description
 if self.graph.value(column, DC.description) != None:
 self.graph.add((propertyRes, DC.description, self.graph.value(column,
DC.description)))
#2.1.10 Adding values to the previous defined list/dictionaries as follows:
 #(1)add column name
 #(2)add pairs with columnname(name) and datatype (value)
 #(3)add column names using propertyURL
 mappedColumnsNames += columnName
 datatypeForColumn[str(columnName)] = str(self.graph.value(column,
CSVW.datatype))
 propertyForColumn[str(columnName)] = propertyRes
#2.1.11 Go to the next column description (rdf:rest)
 columnList = self.graph.value(columnList, RDF.rest)

#2.2 Store aboutURL of the json-ld table into a variable
 urlTemplate = self.graph.value(schemaRes, CSVW.aboutUrl)

#2.3 Slice the URI in three parts
 groups = re.match("^(.*?)\{([A-Za-z0-9\-_]+)\}(.*)$", urlTemplate)
 # pre = http://semmtech.nl/ssn/csvw.csv/Requirement
 pre = groups.group(1)
 # post = none
 post = groups.group(3)
 # nameCol = ".{_row}"
 nameCol = groups.group(2)

#2.4 Store all csv column headers in variable
 csvHeader = csvData.next()

#2.5 Map numerical csv column indexes to each csvHeader
 cellname2Index = self._cellToIndexMapping(csvHeader)
 idIndex=-1

115

#not relevant in this case
 if nameCol!="_row":
 idIndex = csvHeader.index(nameCol)

#2.6.0 (Start with) iterating over each observation in the csv data
 linesRead = 0
#2.6.1 Create a specific requirement for each room
 rooms = ["Intro-Experience", "Hoofdthema1NederlandEnDeWereld",
"Hoofdthema2DeWereldVanDeKrijgsmacht",
 "Pronkzaal", "Hoofdthema3MilitairenInDeSchijnwerpers",
"Hoofdthema4DeWereldVanDeTechniek",
 "Hoofdthema5Operaties", "Hoofdthema6SamenlevingEnKrijgsmacht"]
 for line in csvData:
 Requirement = ["OperatieveTemperatuur_" + rooms[linesRead]]
 # id_fragment=str(linesRead)
 id_fragment = Requirement
 if idIndex!=-1:
 id_fragment = urllib.quote_plus(line[idIndex])
 subject = URIRef("%s%s%s" % (pre, id_fragment, post))
#2.6.2 Create row instance
 self.graph.add((tableNode, CSVW.row, subject))
#2.6.3 Map a row to the Observation concept
 self.graph.add((subject, RDF.type, SE.Requirement))
#2.6.4 Create a dictionary for mapping the data instances to a concept
 mapping = {
 "Condition": "http://semmtech.nl/se/ontology/Condition",
 "Room": "http://semmtech.nl/se/ontology/Room",
 "QuantityValue": "http://semmtech.nl/se/ontology/QuantityValue",
 "Organization": "http://semmtech.nl/se/ontology/Organization",
 }
#2.6.5 For each cell value of a csv row, define a standard subject
 for cellname, i in cellname2Index.items():
 subject = URIRef("%s%s%s" % (pre, id_fragment, post))
#not relevant in this case
 if cellname not in propertyForColumn.keys():
 #print "no hit for (%s)"%cellname
 continue
#2.6.6 Redefine standard subject based upon csv column header
 if cellname == "lowerBoundary":
 subject = URIRef(line[2])

 if cellname == "upperBoundary":
 subject = URIRef(line[2])

 if cellname == "unit":
 subject = URIRef(line[2])
#2.6.7 Define a property based upon csv column header
 predicate = propertyForColumn[cellname]
#2.6.8 Get + define a object as a URI or literal
 if "/" in line[i]:
 obj = URIRef(line[i])
 else:
 obj = self.makeObject(datatypeForColumn[cellname], line[i])
 #if cellname == "hasValue":
 # obj = URIRef(line[4])
 #if cellname == "hasQuantityValue":
 # obj = URIRef(line[5])
#2.6.9 Add a RDF- data instance to the graph
 self.graph.add((subject, predicate, obj))
#2.6.10 Check + Map + Add a RDF-type to the graph
 concept_URI = ""

116

 if "/" in str(obj):
 concept = obj.split('/')[4]
 if concept in mapping.keys():
 concept_URI = (mapping.get(concept))
 self.graph.add((URIRef(obj), RDF.type, URIRef(concept_URI)))
 linesRead += 1
 if(MAX_LINES_TO_PROCESS > 0 and linesRead >= MAX_LINES_TO_PROCESS): break

 def _cellToIndexMapping(self, csvHeader):
 #return dict(zip([x.strip() for x in csvHeader], range(0, len(csvHeader))))
 return dict(zip(csvHeader, range(0, len(csvHeader))))

def _sanitizeSID(self, sid):
return sid.replace('_', '-')

 def makeObject(self, datatypeStr, val):
 if datatypeStr == "anyURI":
 return URIRef(val)
 else:
 return Literal(val, datatype=datatypeStr)

 def printN3(self):
 print(self.graph.serialize(format='n3'))

 def writeToFile(self, fileName, format="xml"):
 self.graph.serialize(open(fileName, "w"), format)

#2.7 Write to a rdf file
g = Graph()
converter = CSVWtoRDF(g)
converter.loadCSVW("se_requirements_definitief_OUTPUT.csv")
converter.writeToFile("se_requirements_definitief_OUTPUT.rdf")

117

Appendix V A partial sensor RDF- graph

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF

 xmlns:csvw="http://www.w3.org/ns/csvw#"

 xmlns:dcat="http://www.w3.org/ns/dcat#"

 xmlns:dcterms="http://purl.org/dc/terms/"

 xmlns:qudt="http://qudt.org/schema/qudt#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:ssn="http://purl.oclc.org/NET/ssnx/ssn#"

 xmlns:time="http://www.w3.org/2006/time#"

>

 <rdf:Description rdf:about="http://example.com/id/SensorOutput/3398f48f-1d9a-11e6-8982-240a64020db4">

 <rdf:type rdf:resource="http://purl.oclc.org/NET/ssnx/ssn#SensorOutput"/>

 <ssn:hasValue rdf:resource="http://example.com/id/ObservationValue/33a1800f-1d9a-11e6-ad99-

240a64020db4"/>

 </rdf:Description>

 <rdf:Description rdf:about="http://example.com/id/Observation/19c49eae-2e7b-11e6-942b-240a64020db4">

 <ssn:observedProperty rdf:resource="http://dbpedia.org/resource/temperature"/>

 <ssn:observationResult rdf:resource="http://example.com/id/SensorOutput/3398a66e-1d9a-11e6-9e45-

240a64020db4"/>

 <ssn:observationSamplingTime rdf:resource="http://example.com/id/Instant/338f3091-1d9a-11e6-965b-

240a64020db4"/>

 <rdf:type rdf:resource="http://purl.oclc.org/NET/ssnx/ssn#Observation"/>

 <ssn:featureOfInterest rdf:resource="http://dbpedia.org/resource/air"/>

 <ssn:observedBy rdf:resource="http://example.com/id/Sensor/OS12GRFMET115"/>

 </rdf:Description>

 <rdf:Description rdf:about="http://semmtech.nl/ssn/csvw.csv">

 <csvw:row rdf:resource="http://example.com/id/Observation/1b050df0-2e7b-11e6-bf45-240a64020db4"/>

 <csvw:row rdf:resource="http://example.com/id/Observation/1986f970-2e7b-11e6-ae74-240a64020db4"/>

 <csvw:row rdf:resource="http://example.com/id/Observation/1bda5f51-2e7b-11e6-9fc3-240a64020db4"/>

 <csvw:row rdf:resource="http://example.com/id/Observation/1a39808f-2e7b-11e6-8c35-240a64020db4"/>

 <csvw:row rdf:resource="http://example.com/id/Observation/1befe321-2e7b-11e6-8fab-240a64020db4"/>

 <csvw:row rdf:resource="http://example.com/id/Observation/1ca3c9cf-2e7b-11e6-bcb0-240a64020db4"/>

 <csvw:row rdf:resource="http://example.com/id/Observation/1b41c8d1-2e7b-11e6-9242-240a64020db4"/>

 <csvw:row rdf:resource="http://example.com/id/Observation/1c44b9e1-2e7b-11e6-9cef-240a64020db4"/>

 <csvw:row rdf:resource="http://example.com/id/Observation/19e25fe1-2e7b-11e6-80e3-240a64020db4"/>

 <csvw:row rdf:resource="http://example.com/id/Observation/193e309e-2e7b-11e6-9c8b-240a64020db4"/>

 <csvw:row rdf:resource="http://example.com/id/Observation/1bc94851-2e7b-11e6-8de6-240a64020db4"/>

 <csvw:row rdf:resource="http://example.com/id/Observation/1ca96f1e-2e7b-11e6-87c6-240a64020db4"/>

 <csvw:row rdf:resource="http://example.com/

--- --

<rdf:Description rdf:about="http://example.com/id/Observation/19ec23de-2e7b-11e6-8679-240a64020db4">

 <ssn:observedBy rdf:resource="http://example.com/id/Sensor/OS12GRFMET115"/>

 <ssn:observationResult rdf:resource="http://example.com/id/SensorOutput/33991b9e-1d9a-11e6-80c1-

240a64020db4"/>

 <rdf:type rdf:resource="http://purl.oclc.org/NET/ssnx/ssn#Observation"/>

 <ssn:observationSamplingTime rdf:resource="http://example.com/id/Instant/338ff3de-1d9a-11e6-a6d4-

240a64020db4"/>

 <ssn:observedProperty rdf:resource="http://dbpedia.org/resource/temperature"/>

 <ssn:featureOfInterest rdf:resource="http://dbpedia.org/resource/air"/>

 </rdf:Description>

 <rdf:Description rdf:about="http://example.com/id/Sensor/OS12GRFMET115">

 <ssn:hasLocation

rdf:resource="http://example.com/id/PhysicalPlace/KrijgsmachtbredeThemaruimteIntroductie"/>

 <rdf:type rdf:resource="http://purl.oclc.org/NET/ssnx/ssn#Sensor"/>

 </rdf:Description>

 <rdf:Description rdf:about="http://example.com/id/Instant/3395c040-1d9a-11e6-9500-240a64020db4">

 <time:inXSDDateTime rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-

16T02:12:00</time:inXSDDateTime>

 <rdf:type rdf:resource="http://www.w3.org/2006/time#Instant"/>

 <time:inXSDDateTime rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-

16T01:16:00</time:inXSDDateTime>

 </rdf:Description>

 <rdf:Description rdf:about="http://example.com/id/Observation/1acc71c0-2e7b-11e6-9439-240a64020db4">

 <ssn:observedBy rdf:resource="http://example.com/id/Sensor/OS12GRFMET115"/>

 <ssn:featureOfInterest rdf:resource="http://dbpedia.org/resource/air"/>

 <rdf:type rdf:resource="http://purl.oclc.org/NET/ssnx/ssn#Observation"/>

 <ssn:observationResult rdf:resource="http://example.com/id/SensorOutput/339b1770-1d9a-11e6-aa36-

240a64020db4"/>

 <ssn:observedProperty rdf:resource="http://dbpedia.org/resource/temperature"/>

 <ssn:observationSamplingTime rdf:resource="http://example.com/id/Instant/3391efb0-1d9a-11e6-8950-

240a64020db4"/>

 </rdf:Description>

118

119

Appendix W A partial SE RDF- graph

?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF

 xmlns:csvw="http://www.w3.org/ns/csvw#"

 xmlns:dcat="http://www.w3.org/ns/dcat#"

 xmlns:dcterms="http://purl.org/dc/terms/"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:se="http://semmtech.nl/se/ontology/"

>

 <rdf:Description

rdf:about="http://example.com/id/Requirement/OperatieveTemperatuur_Hoofdthema5Operaties">

 <se:categorizedBy rdf:resource="http://example.com/id/Condition/ThermischComfortVerblijfsruimten"/>

 <se:responsibilityFor rdf:resource="http://example.com/id/Organization/Heijmans"/>

 <se:specifiesBoundaries rdf:resource="http://example.com/id/QuantityValue/1ac88651-1a94-11e6-8f78-

 240a64020db4"/>

 <rdf:type rdf:resource="http://semmtech.nl/se/ontology/Requirement"/>

 <se:specifies rdf:resource="http://example.com/id/Room/Hoofdthema5Operaties"/>

 </rdf:Description>

 <rdf:Description rdf:nodeID="Ne52e96d6b5574bec93b2413b69b9b834">

 <csvw:name>specifies</csvw:name>

 <csvw:required rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">true</csvw:required>

 <csvw:propertyUrl rdf:resource="http://semmtech.nl/se/ontology/specifies"/>

 <dcterms:description xml:lang="en">Points to a room</dcterms:description>

 </rdf:Description>

 <rdf:Description rdf:about="http://semmtech.nl/se/ontology/upperBoundary">

 <dcterms:description xml:lang="en">Points to the numerical value of a bound</dcterms:description>

 </rdf:Description>

<rdf:Description rdf:about="http://example.com/id/QuantityValue/1ac88651-1a94-11e6-b384-240a64020db4">

 <se:unit rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Celcius</se:unit>

 <se:lowerBoundary rdf:datatype="http://www.w3.org/2001/XMLSchema#double">18.0</se:lowerBoundary>

 <rdf:type rdf:resource="http://semmtech.nl/se/ontology/QuantityValue"/>

 <se:upperBoundary rdf:datatype="http://www.w3.org/2001/XMLSchema#double">25.0</se:upperBoundary>

 </rdf:Description>

 <rdf:Description rdf:nodeID="N4de662dd29d64a379d4b9c54a7e1c1c2">

 <csvw:primaryKey>Requirement</csvw:primaryKey>

 <csvw:aboutUrl rdf:resource="http://example.com/id/Requirement/{_row}"/>

 <csvw:column rdf:nodeID="N7dc02fe309834c7c8c124ae909bab4dc"/>

 </rdf:Description>

120

121

Appendix X A script for linking RDF graphs

from rdflib import Graph, Literal, URIRef, Namespace,OWL, XSD, RDF, RDFS, BNode
import csv
import urllib
import re
from operator import itemgetter
import sys
import pprint

#3.0 Initialize a graph
link_graph = Graph()

#3.1 Order the rooms to be mapped together
ifcRooms = ["458", "191", "221", "246", "271", "433", "296", "408"]
ssnRooms = ["KrijgsmachtbredeThemaruimteIntroductie", "KrijgsmachtbredeThemaruimte1",
"KrijgsmachtbredeThemaruimte2", "KrijgsmachtbredeThemaruimtePronkzaal",
"KrijgsmachtbredeThemaruimte3", "KrijgsmachtbredeThemaruimte4",
"KrijgsmachtbredeThemaruimte5", "KrijgsmachtbredeThemaruimte6"]
seRooms = ["Intro-Experience", "Hoofdthema1NederlandEnDeWereld",
"Hoofdthema2DeWereldVanDeKrijgsmacht", "Pronkzaal",
"Hoofdthema3MilitairenInDeSchijnwerpers", "Hoofdthema4DeWereldVanDeTechniek",
"Hoofdthema5Operaties", "Hoofdthema6SamenlevingEnKrijgsmacht"]

#3.2 Map the rooms via a list index
for index in range(len(ifcRooms)):
 ifc =
URIRef("http://linkedbuildingdata.net/ifc/resources20160515_194757/IfcSpace_" +
ifcRooms[index])
 ssn = URIRef("http://example.com/id/PhysicalPlace/" + ssnRooms[index])
 se = URIRef("http://example.com/id/Room/" + seRooms[index])

 link_graph.add((ifc, OWL.sameAs, ssn))
 link_graph.add((ifc, OWL.sameAs, se))

#3.3 write the graph to a rdf- file
link_graph.serialize("link_Graph.rdf")

122

123

Appendix Y A partial link RDF- graph

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF

 xmlns:ns1="http://www.w3.org/2002/07/owl#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

>

 <rdf:Description rdf:about="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcSpace_191">

 <ns1:sameAs rdf:resource="http://example.com/id/Room/Hoofdthema1NederlandEnDeWereld"/>

 <ns1:sameAs rdf:resource="http://example.com/id/PhysicalPlace/KrijgsmachtbredeThemaruimte1"/>

 </rdf:Description>

 <rdf:Description rdf:about="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcSpace_296">

 <ns1:sameAs rdf:resource="http://example.com/id/Room/Hoofdthema5Operaties"/>

 <ns1:sameAs rdf:resource="http://example.com/id/PhysicalPlace/KrijgsmachtbredeThemaruimte5"/>

 </rdf:Description>

 <rdf:Description rdf:about="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcSpace_271">

 <ns1:sameAs rdf:resource="http://example.com/id/PhysicalPlace/KrijgsmachtbredeThemaruimte3"/>

 <ns1:sameAs rdf:resource="http://example.com/id/Room/Hoofdthema3MilitairenInDeSchijnwerpers"/>

 </rdf:Description>

 <rdf:Description rdf:about="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcSpace_246">

 <ns1:sameAs rdf:resource="http://example.com/id/PhysicalPlace/KrijgsmachtbredeThemaruimtePronkzaal"/>

 <ns1:sameAs rdf:resource="http://example.com/id/Room/Pronkzaal"/>

 </rdf:Description>

 <rdf:Description rdf:about="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcSpace_221">

 <ns1:sameAs rdf:resource="http://example.com/id/PhysicalPlace/KrijgsmachtbredeThemaruimte2"/>

 <ns1:sameAs rdf:resource="http://example.com/id/Room/Hoofdthema2DeWereldVanDeKrijgsmacht"/>

 </rdf:Description>

 <rdf:Description rdf:about="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcSpace_371">

 <ns1:sameAs rdf:resource="http://example.com/id/Room/Hoofdthema6SamenlevingEnKrijgsmacht"/>

 <ns1:sameAs rdf:resource="http://example.com/id/PhysicalPlace/KrijgsmachtbredeThemaruimte6"/>

 </rdf:Description>

 <rdf:Description rdf:about="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcSpace_346">

 <ns1:sameAs rdf:resource="http://example.com/id/PhysicalPlace/KrijgsmachtbredeThemaruimteIntroductie"/>

 <ns1:sameAs rdf:resource="http://example.com/id/Room/Intro-Experience"/>

 </rdf:Description>

 <rdf:Description rdf:about="http://linkedbuildingdata.net/ifc/resources20160610_001315/IfcSpace_321">

 <ns1:sameAs rdf:resource="http://example.com/id/Room/Hoofdthema4DeWereldVanDeTechniek"/>

 <ns1:sameAs rdf:resource="http://example.com/id/PhysicalPlace/KrijgsmachtbredeThemaruimte4"/>

 </rdf:Description>

</rdf:RDF>

124

125

Appendix Z A script for a SPARQL rule & IFC visualization

import urllib2
from xml.dom.minidom import parse, parseString

import ifcopenshell
import ifcopenshell.geom

#4.0 create a password manager
username = "rakeshkalpoe"
password = "n8Eh3Hb92Cm7"
endpointURL =
"http://triples.test.semmweb.com/catalogs/rakeshkalpoe/repositories/data"

#4.0.1 Create an OpenerDirector object with support for basic HTTP Authentication
password_mgr = urllib2.HTTPPasswordMgrWithDefaultRealm()
password_mgr.add_password(None, endpointURL, username, password)

#4.0.2 Install the object globally and incorporate it into urlOpen method
auth_handler = urllib2.HTTPBasicAuthHandler(password_mgr)
opener = urllib2.build_opener(auth_handler)
urllib2.install_opener(opener)

#4.1.1 Formulate a SPARQL query to retrieve the malfunctioning rooms
#4.1.2 Based upon the most recent temperature sensor values that
#4.1.3 are not in the domain specified by the lower and upper boundary
query = """
SELECT DISTINCT ?IfcString ?SsnRoom ?Float ?max_DateTime
 WHERE
 {
 {
 SELECT (MAX(?DateTime) AS ?max_DateTime)
 WHERE {?Instant time:inXSDDateTime ?DateTime}
 }

 {
 ?IfcRoom a ifcowl:IfcSpace.
 ?IfcRoom ifcowl:globalId_IfcRoot ?IfcGuid.
 ?IfcGuid express:hasString ?IfcString.

 ?IfcRoom owl:sameAs ?SsnRoom.

 ?SsnRoom a dul:PhysicalPlace.
 ?Sensor ssn:hasLocation ?SsnRoom.
 ?Observation ssn:observedBy ?Sensor.

 ?Observation ssn:observationSamplingTime ?Instant.
 ?Instant time:inXSDDateTime ?max_DateTime.

 ?Observation ssn:observationResult ?SensorOutput.
 ?SensorOutput ssn:hasValue ?ObservationValue.
 ?ObservationValue qudt:numericValue ?Float.

 ?IfcRoom owl:sameAs ?SeRoom.
 ?Requirement se:specifies ?SeRoom.
 ?Requirement se:specifiesBoundaries ?QuantityValue.
 ?QuantityValue se:lowerBoundary ?LowerBoundary.
 ?QuantityValue se:upperBoundary ?UpperBoundary.
 }

 FILTER ((?Float < ?LowerBoundary || ?Float > ?UpperBoundary))
 }

126

 ORDER BY desc(?DateTime)
"""

#4.2.0 Format the SPARQL- query with respect to the REST- rules
escapedQuery = urllib2.quote(query)
requestURL = endpointURL + "?query=" + escapedQuery

#4.2.1 Send and retrieve results via the REST- query using HTTP
request = urllib2.Request(requestURL)
result = urllib2.urlopen(request)
xmlResult = result.read()

#4.3.0 Convert the xml- result in a DOM object
#4.3.0 so it can be accessed by DOM- functionalities
domResult = parseString(xmlResult)

#4.3.1 Loop through the results
#4.3.1 and append the GUIDS through a list
failedRooms = domResult.getElementsByTagName("result")
guidsOfFailedRooms = []

for failedRoom in failedRooms:
 guidOfDefect = failedRoom.getElementsByTagName("literal")[0]
 guidsOfFailedRooms.append(guidOfDefect.firstChild.data)

#4.4.0 Specify to return pythonOCC shapes from ifcopenshell.geom.create_shape()
settings = ifcopenshell.geom.settings()
settings.set(settings.USE_PYTHON_OPENCASCADE, True)

#4.4.1 Initialize a graphical display window
occ_display = ifcopenshell.geom.utils.initialize_display()

#4.4.2 Open the IFC file using IfcOpenShell
ifc_file = ifcopenshell.open("160609_National Military Museum.ifc")

#4.4.3 Display the geometrical contents of the file using Python OpenCascade
products = ifc_file.by_type("IfcProduct")
#4.4.4 Loop through the geometry and
#4.4.4 if IfcSpace and its GUID is in guidsOfFailedRooms, give it a red color
#4.4.4 else, color ifcSpace green
#4.4.5 Set geometry other than ifcSpace to a certain transparancy
for product in products:
 if product.Representation and product.is_a("IfcSpace"):
 shape = ifcopenshell.geom.create_shape(settings, product).geometry
 if product.GlobalId in guidsOfFailedRooms:
 clr = (1,0,0)
 else:
 clr = (0, 1, 0)
 display_shape = ifcopenshell.geom.utils.display_shape(shape, clr)
 ifcopenshell.geom.utils.set_shape_transparency(display_shape, 0.0)
 elif product.Representation:
 shape = ifcopenshell.geom.create_shape(settings, product).geometry
 clr = (1, 1, 1)
 display_shape = ifcopenshell.geom.utils.display_shape(shape, clr)
 ifcopenshell.geom.utils.set_shape_transparency(display_shape, 0.8)

#4.5 Enter the main loop so that the user can navigate
ifcopenshell.geom.utils.main_loop()

