

Eindhoven University of Technology

Master of Construction Management & Engineering

Automated Rule Checking for in-house BIM Norms of

Building Models

By

V.R.D. Ayyadurai Charles (0923390)

17th August 2016

 __

 Supervisors Dr. dipl. ing. Jakob Beetz

 Mr. Chi Zhang

 Graduation Professor Prof.dr.ir. Bauke de Vries

 External Supervisors Mr. Joost van d Koppel

Hendriks Bouw en Ontwikkeling, Oss, The Netherlands

Eindhoven University of Technology, Eindhoven, The Netherlands

ii

iii

Acknowledgement
Foremost, I would like to express my sincere gratitude to my advisor Dr. dipl. ing. Jakob Beetz

for the continuous support of my master thesis, for his patience, motivation, enthusiasm, and

immense knowledge. His guidance helped me in all the time of research and writing of this

thesis. I could not have imagined having a better advisor and mentor for my master thesis.

Besides my advisor, I would like to thank the rest of my other supervisors: Mr. Chi Zhang and

Mr. Thomas Krijnen, for their encouragement, and technical support.

I would like to Prof.dr.ir. Bauke de Vries chairperson for my graduation committee.

My sincere thanks also goes to Mr. Joost van de Koppel (BIM Manager) for offering me the

Master thesis internship opportunities in Hendriks Bouw en Ontwikkeling located in Oss, The

Netherlands.

I would like to thank my fellow student friends at Eindhoven University of Technology for the

fun, support and encouragement throughout the whole years of my master program.

Last but not least, I would like to thank the God almighty and my parents, Charles and Grace

Shanthi for their blessings and support through my life.

Sincerely,

V.R.D.Ayyadurai Charles

IV

 Summary
Rules are written in a natural language by the experts of the field. In the construction industry

the rules and regulations are called “Building Standards”. These rules are often published by the

public legal bodies in both national and international level. Professional clients have their own

in-house rules and regulations in order to maintain a smooth work flow with the supply chain

partners throughout the building process. Rule checking for building design is conducted

universally to check the stability of building design to improve the quality and safety of that

building. Traditionally, building designs in 2D are checked against the building standards

manually. This traditional rule checking process is more complex and time consuming. The

advancement in Building Information Modeling (BIM) in the construction industry over the

years allows rule checking process to be automated. BIM has brought an integration of building

information and its 3D visualization of objects into building models.

In the past decade, many new automated rule checking systems and tools have been

developed. Some state of the art technologies in the field of automated rule checking process

are CORENET, Solibri Model Checker, EDM model checker and SMART-Code. These

technologies have their own limitations in terms of interoperability, extendibility and logical

compliance checking. Rules and regulations are changing from time to time based on new

inventions in the construction industry to enhance the quality and safety of the building.

Investing on the commercial tools like Solibri Model Checker would increase the investment

cost in a project and reduce the overall profit.

This research focuses on avoiding above limitations of an automated rule checking tools for

building designs. Semantic web technology and Linked data approach provides a possible

solutions to overcome some of these limitations. Using the Semantic web technology: schemas,

instances, and the rules can be defined in a common frame with the same language or format,

known as Resource Description Framework (RDF). Linking of diverse information gives an

opportunity to show potential interrelationship among diverse sources of information in a

building project.

This graduation project is collaborated with Hendriks Bouw en Ontwikkeling located in Oss, The

Netherlands. Hendriks have their own in-house BIM norm known as the HBO BIM norm. The

models are checked and validated using Solibri Model Checker (SMC). The above mentioned

limitations of SMC are reflected in the process of rule checking in the company. Still few in-

house rules are checked manually and it is time consuming and needs extra effort for the BIM

manager to check the design. This project focuses on developing an automated rule checker for

in-house BIM norms based on Linked data approach.

Initially, the rules are selected from the HBO BIM norm based on company’s preference(s) and

academic perspective. Rules are categorized into two: property rules and geometrical rules. The

building design and construction data are converted into a common data format know as RDF.

V

Rules written in a natural language are formalized using the SPARQL query language. The use

case models are tested against the rules and end results are reported in three dimensional

view. Finally, the research questions stated for this graduation project are answered and

recommendations are given for future development and research.

This prototype of an automated rule checker based on Linked data approach proves that this

technique is able to solve the limitations and barriers in the current rule checking process of the

company. This automated rule checker has the following capabilities.

 The ability to query and check the building model without expensive and heavy

technical or programming requirements.

 The ability to perform checks on both the properties and geometry of the building

model.

 The ability to visualize the results in a three dimensional view.

 This rule checker can be shared among the stakeholders to check the design by

themselves before sending it to other stakeholders. It reduces the iterative

process of rule checking.

VI

Abstract
In recent years the Architectural, Engineering & construction (AEC) industry relies on different

automated tools to check and validate the building design. However most of the tools are lack

in interoperability, extendibility and logical compilation checks. Moreover these tools are

programmed with high level programming languages. By avoiding these limitations an

automated tool is beneficial for the rule checking process. Semantic web technology and Linked

data approaches help to fulfill the above aim. This graduation project focuses on developing, an

automated rule checker based on a Linked Data approach for in-house BIM norms. The

architectural design and construction data are converted into common data format know as

Resource Description Framework (RDF). The rules form the in-house BIM norm is formalized

using the SPARQL query language. The results of this automated rule checking process are

visualized in three dimensional view using Python libraries and modules know IfcOpenShell and

python OpenCasCade. Once this in-house rule checker is developed, the end user can check

multiple of design and 3D visualization of results helps for effective communication among the

stakeholders involved in the construction project. It addition this it reduces the cost on

investing in a commercial rule checking tools.

Keywords: Rule checking, in-house BIM norm, Linked data, RDF, SPARQL and IfcOpenShell

VII

Contents
Acknowledgement ... iii

Summary .. IV

Abstract .. VI

Chapter-1 .. 1

1 Introduction ... 1

1.1 Research Overview ... 2

1.1.1 Current process .. 2

1.1.2 Problem analysis .. 5

1. 2 Research question .. 5

1.3 Research approach.. 6

1.3.1 Rule and Requirement Interpretation ... 6

1.3.2 Building Model Preparation ... 6

1.3.3 Rule Execution .. 7

1.3.4 Reporting the Result .. 7

1.4 Expected results .. 7

Chapter-2 .. 9

2 Glossary .. 9

Chapter-3 .. 13

3 Literature Review ... 13

3.1 Building Information Modeling (BIM) and Industry Foundation Classes (IFC) 13

3.2 Linked Data and Semantic web ... 14

3.3 BIM, Linked Data and Semantic web .. 15

3.4 Rules and Regulation .. 16

3.5 Automated Rule Checking and Linked Data .. 17

3.6 Conculsion ... 19

Chapter-4 .. 21

4 Methodology .. 21

4.1 Research model... 21

4.1.1 In-House Rules ... 21

4.1.2 Formalized the rules .. 23

4.1.3 Convert data to RDF ... 24

VIII

4.1.4 Execution and Visualization ... 24

4.2 Conceptual Frame work .. 24

Chapter-5 .. 25

5 Implementation ... 25

5.1 Introduction .. 25

5.2 Implementation for Property Rule Checking .. 26

5.3 Programming steps for Property Rule Check .. 28

5.3.1 Import Libraries and Modules .. 28

5.3.2 SPARQL Query: Property Rule Check ... 29

5.3.3 Visualization: Property Rule Check .. 30

5.4 Results of Property Rule Checking .. 30

5.5 Implementation of Geometrical Rule Checking .. 33

5.6 Programming steps for Geometric Rule checking .. 34

5.6.1 Import libraries and IFC model .. 34

5.6.2 Calculating wall dimensions ... 34

5.6.3 Creating a RDF graph ... 35

5.6.4 SPARQL query: Geometrical Rule checking .. 36

5.6.5 Visualization: Geometrical Rule checking .. 36

5.7 Result of Geometrical Rule Checking .. 37

5.8.1 Assumptions ... 39

5.8.2 Limitations .. 39

5.8.3 Recommendation ... 39

Chapter-6 .. 41

6 Conclusion .. 41

6.1 Answer(s) to research questions .. 41

6.2 Social Relevance .. 43

Bibliography .. 45

Appendix- A ... 49

Appendix-B .. 61

Appendix-C .. 65

IX

Figure 1 Overall Rule Checking process report format ... 4

Figure 2 Current rule checking process (BPNM) ... 4

Figure 3 Research approach .. 6

Figure 4 Conceptual Frame Work ... 21

Figure 5 Xella Combinations in IFC file (screen shot) .. 23

Figure 6 Work flow diagram of Property Rule Check .. 26

Figure 7 Wall property combinations in RDF triple format .. 27

Figure 8 Programming sequence for Property Rule Checking .. 28

Figure 9 SPARQL Query for Property rule check ... 29

Figure 10 Output of the SPARQL query for property rule check in TopBraid Composer 30

Figure 11 Violated wall Properties in 3D view .. 31

Figure 12 Walls other than limestone walls as in green ... 32

Figure 13 Highlighting non-limestone walls in green using "If “condition ... 32

Figure 14 Work flow of Geometrical Rule Checking ... 33

Figure 15 Programming sequence for Geometrical rule checking ... 34

Figure 16 RDF graph with wall dimensions ... 35

Figure 17 Query to find the walls longer than 12 meters ... 36

Figure 18 Walls longer than 12 meters highlighted in red ... 37

Figure 19 Query modified to check limestone walls smaller than 12 ... 37

Figure 20 Geometrical rule checking conducted using complex model ... 38

Figure 21 Limestone walls smaller than 12 meters are shown in green .. 38

file:///C:/Users/VINOTH/Dropbox/thesis%20doc/doc/print/Thesis-Report_V.R.D.Ayyadurai%20Charles%20(0923390).docx%23_Toc458538366
file:///C:/Users/VINOTH/Dropbox/thesis%20doc/doc/print/Thesis-Report_V.R.D.Ayyadurai%20Charles%20(0923390).docx%23_Toc458538368
file:///C:/Users/VINOTH/Dropbox/thesis%20doc/doc/print/Thesis-Report_V.R.D.Ayyadurai%20Charles%20(0923390).docx%23_Toc458538372
file:///C:/Users/VINOTH/Dropbox/thesis%20doc/doc/print/Thesis-Report_V.R.D.Ayyadurai%20Charles%20(0923390).docx%23_Toc458538375
file:///C:/Users/VINOTH/Dropbox/thesis%20doc/doc/print/Thesis-Report_V.R.D.Ayyadurai%20Charles%20(0923390).docx%23_Toc458538376
file:///C:/Users/VINOTH/Dropbox/thesis%20doc/doc/print/Thesis-Report_V.R.D.Ayyadurai%20Charles%20(0923390).docx%23_Toc458538378

X

1

Chapter-1

1 Introduction
In recent years the construction industry became more complex due to an increased number of

stakeholders or actors involved in the same project. For example, to construct a normal multi-

story building a minimum of five stakeholders are involved. They are: client, structural

engineer, architect, MEP engineer and site manager. These stakeholders often have diverse

interests in the construction project. Based on the management hierarchy, each stakeholder

has different levels of power to influence certain decisions and even controlling the actions in

the project. Decisions are often made based on requirements and actions that are normally

controlled by rules and regulations (Nash et al., 2010). These rules and regulations are written

by humans in a natural language. The collection of rules and regulations for a building design is

commonly known as building standards. In general, building standards are formulated for each

domain in the architectural, engineering and construction (AEC) industry such as architectural

and structural building standards. Since there are large numbers of building standards, checking

and validating the building design based on those standards manually is a complex task.

Violations that arise (if any) in the process of rule checking must be clearly explained and

communicated to other stakeholders involved in the project.

In the AEC industry the client is the person or company, with the controlling interest in the

project. Generally the client will retain a significant level of control over the assessment and

appointment of Designers and Contractors for a project (Berggren, Soderlund, & Anderson,

2001). Due the globalization, the client’s taste regarding the requirements and service became

more demanding and sophisticated. Under this circumstance, the construction industries are

under pressure to fulfill the client’s expectation with more difficulties (Albino et al., 2002).

Especially, the professional clients have their own in-house rules and regulations, to maintain

uniqueness and quality in the construction project. Checking these in-house rules against the

actual design before executions helps to maintain the unique competitive advantage of that

client or company. If any violation exits during the process of rule checking, it must be address

to the concern person in standard way because communication plays a major role in

stakeholder management (Malkat & GYOO, 2012). Building Information Model (BIM) is defined

by international standards as shared digital representation of physical and operational

characteristics of any built object which is reliable and helps on decision making (Volk et al.,

2014) BIM is used for communication and data exchange in the AEC industry. When there are

large number of stakeholders involved in a construction project, BIM is used to exchange data.

There are platform like BIMserver support data exchange using semantic web technology

(Beetz et al., 2010)& (bimserver.org, 2011)1. The Semantic Web aims to build a common

1
 http://bimserver.org/

2

framework that allows sharing and reused of data across applications, companies or industries,

and community boundaries (W3C, 2012)2.

Industry Foundation Classes (IFC) is an open vendor-independent neutral file format that

captures both geometry and properties of building objects and their relationships within

building information models (BIM). This facilitates the coordination of information across

incompatible applications, which is a prerequisite for improving building workflows using

building information modeling (BIM) methods. Building Information Modeling (BIM) technology

in the AEC industry is used e.g for clash detection, visualization, construction planning and

monitoring cost estimation of the construction project.

The AEC industry deals with large numbers of data and documents. These data and documents

are often isolated from each other. For example, the clients have some requirements

(information) towards the architectural design. If this information is isolated, maintaining a

well-functioning information flow throughout the complete building life-cycle is complex

(Pauwels, 2014). To avoid complexity diverse information data can be linked and formed into

structure data. This approach is called “Linked Data approach” (Berners-Lee et al., 2009).

This graduation project aims to check the mismatches against the rules and regulations in BIM

model by developing an automated rule checker based on the Linked Data approach. This

research topic focuses on finding the mismatches and gives a solution approach in the

conceptual design phase of a building life cycle. If the design is checked and validated in the

conceptual design phase the other life cycles can be executed smoothly.

By using this automated rule checker the stakeholders can check their models against the rules

and regulations. The mismatch and violations are visually represented in a three dimensional

view as end result. Visualization of violations helps to communicate to the respective

stakeholders involved in the construction project. As a result, it will reduce the analyzes cost

and avoid delays in the construction project. This increases the profits for both the client and

construction company.

1.1 Research Overview
In this section, the current rule checking process conducted in the Hendriks Bouw en

Ontwikkeling is explained. The draw backs of the current rule checking process was explained

based on the expect interview from the company. Finally, the objective of this graduation

project is briefed.

1.1.1 Current process

This graduation project is in collaborated with Hendriks Bouw en Ontwikkeling located in Oss,

The Netherlands. Data such as IFC models, rules sets and requirements were issued by Hendriks

Bouw en Ontwikkeling to conduct this project.

2
 http://semanticweb.org/wiki/Main_Page.html

3

In general, Hendriks buys their BIM models from different Engineering Consultancies in the

market in an IFC file format. Each domain such as Architecture, Structural and MEP is designed

by different Engineering Consultancies. These companies are listed in Table 1

Architectural Structural MEP

By Root Goudstikker de Vries Hendriks Installatietechniek

van der Pauwert Architecten Schrijvers Elektrotechniek

H&R bouwkundig ingenieurs
Table 1 List of Engineering Consultancies

This research thesis focuses on Architectural design of a building model. These architectural

BIM models were designed based on Rijksgebouwendienst (Rgd) BIM standards (Rgd BIM

Standard, 2013) by the Engineering consultancies. Since Hendriks is the client, the Engineering

Consultant must adopt the in-house BIM Norms known as Hendriks Bouw en Ontwikkeling

(HBO) Building Information Model standard Norms (HBO BIM Norm, 2016). These in-house

rules and requirements are specified by the experts without violating the Rgd BIM Standards

(Rgd BIM Standard).

The HBO BIM norms, specifies some additional rules. It is essential for Hendriks and its supply

chain partners to achieve their goals to conduct the BIM processes more efficiently. Moreover,

this HBO BIM norm helps to maintain uniqueness and competitive advantage in the

construction project.

Currently, Hendriks is using the Solibri Model Checker (SMC) to check and validate the BIM

models. The process of rule checking is conducted on a weekly basis and is documented. The

rule check document contains the details about the project, team members, software user to

draft the model and most importantly the clashes and violations arise during the process of rule

checking. These clashes and violations were illustrated using the screen shot presentation from

the Solibri Model Checker and it is attached to that document. The main objective of this

documentation is to highlight the type of violations or errors in the design and send to the

respective person for decision making. This process of rule checking is conducted in iterative

manner until it satisfies the specifications. The below figure 1 shows the overall contain of the

document.

To be clearer, a BPNM models is illustrated in figure 2 to show the current the rule checking

process in the company. Initially, the building design is designed by the Engineering consultant

(designer). The design is send to the client (Hendriks) in an IFC file format. Using the Solibri

Model Checker (SMC), the design will be checked and validated. If there are any violations or

clashes arise during the process of rule checking, a detailed report is send to the designer to

solve those issues. If the design is satisfied, it will be send to the supplier. The design is double

checked by the supplier. During this process if the design is perfect, the specifications (of the

products) were send for production. Suppose, if there is any violation or issue in the design a

detail report is send to Hendriks by the supplier. Based on those issues, the rule checking

4

process is conducted again until the design satisfies the requirements of both Hendriks and

suppliers. This process conducted in iterative manner.

Figure 1 Overall Rule Checking process report format

R
u

le
 C

h
ec

ki
n

g
P

ro
ce

ss

Ex
ch

an
ge

R

eq
u

ir
em

en
ts

En

gi
n

ee
ri

n
g

co
n

su
lt

an
t

H
en

d
ri

ks

Su
p

p
lie

rs

Building design

ER1_BD_to_HD

Check design
using Solibri

Satisfied send to
supplier

Yes

Violations reported
to designer

No

ER2_HD_to_SL

Check the design

Manufacture the
specificationYes

Violations reported
to Hendriks

No

IFC IFC

Figure 2 Current rule checking process (BPNM)

5

1.1.2 Problem analysis

In HBO BIM norms, the rules and specifications are stated for IfcWallStandardCase, IfcSlab,

IfcColomn, IfcBeam, IfcFooting, IfcStairs, IfcRoof, IfcMember, IfcRailings and IfcDoor. Each IFC

object has its own boundary conditions and property sets. The BIM manager has to check and

validate the boundary conditions and property sets for all IFC objects in the BIM models. The

process of rule checking is conducted in design, engineering and realization phase of the

building life cycle.

As mentioned before, currently the Solibri Model Checker (SMC) is used to check and validate

the BIM model in the company. SMC has a set of built-in rules that can be managed by a rule-

set manager. New rules can be added in SMC application programming interface (API) using

Java programming. Since SMC is a commercial tool, the API interface is not publicly available

and it was restricted by the original SMC software developers (Eastman et al., 2009). As result, a

rule-set can be replicated, but the extent of user customization is limited to changing

parameters values. Rules are not static, they are dynamic. Whenever the rules are changed

based on any situation the company (Hendriks) has to go and approach the original software

developer to upgrade or update the new rules in the model checker. This causes additional

investments in the construction project.

Due to this limitation and investment cost, checking all the rules (boundary conditions) and

specifications (property sets) stated in HBO BIM norms are not fully automated. As result, still

few in-house rules and specifications were checked manually. It takes additional time and effort

for the BIM manager to check the design. This time consuming factor reflects in the execution

stage. Any delay in a project life cycle reduces the profit for both the stakeholders and affects

the overall efficiency of the project.

The above issue motivates to develop an automated rule checker for the manually checking

rules stated in the HBO BIM norms. To make the process of rule checking into automated.

In the BIM Norms of Hendriks (HBO BIM Norm, 2016), many rules and regulations were

proposed. Due to time limitations few rules were taken into account, based on the company’s

interest and academic perspective. The chosen rules are explained in-detail in chapter 4,

section 4.1.1

1. 2 Research question
In order to develop this automated rule checker and to answer the problem definitions, a

number of research questions were specified.

Main Question:

 How to develop an Automated Rule checker for in-house BIM norms to check and

validate building models?

6

Sub-Question

 What are the rules chosen for this rule checking process and why it is stated in the in-

house BIM norms?

 What data is needed to conduct this automated rule checking process?

 How is this automated rule checker beneficial for the BIM manager for decision

making?

To get the answers for the above research questions a methodology is formulated. This

methodology and conceptual frame work is illustrated and brief in the below chapter 4.

1.3 Research approach

Rules and Requirements
interpretation in a
logical structure

Building Model
preparation

Rule execution Reporting the results

Figure 3 Research approach

1.3.1 Rule and Requirement Interpretation

Rules and building design codes are stated to control and the monitor the construction project.

These building codes consist of tables, equations and written text in a semi-formal structure.

For example, in the building standards the equations are mainly stated to design and analyze

the structural elements. Transferring these design codes into a computer readable language is

complex because design codes often deal with legal issues and converting these codes without

losing the nature of the context is a complex task. According to (Eastman el at., 2009) in a

language, the rules written would be portable, in the same way that programs language are

portable to different platform environments. This allows running the same rules on a code

checking server and also embeds them in a design tool. The other benefits of a well-designed

language are that, it is able to capture large number of rules, including nested conditions and

branching of alternative contexts within a specified domain.

1.3.2 Building Model Preparation

Building Model Preparation is drafting the building design using any design tool that can

support the Industry Foundation Classes (IFC). A building model consists of datasets such as

properties and dimensions. The design should match to the exact client who suggests some

requirements regarding the design.

7

1.3.3 Rule Execution

Rule checking is straightforward when rules and requirements were converted into a machine

readable format. The functions must deal with the prepared building model. The rules are

executed by applying the set of rules to the instance building model.

1.3.4 Reporting the Result

The main objective of reporting is to communicate the end result of the rule checking process

to the respective stakeholders involved in the project. This reporting process, use for decision

making and solving problems raised during the project life cycle.

1.4 Expected results
The main objective of this graduation project is to develop an automated rule checker for the

in-house BIM norm. This rule checker helps to find the mismatches and violations in the design

against the in-house rules. Once this rule checker is fully developed the end user (BIM manager)

can check multiple model instances. In addition to that, this project concerns about

representing the mismatch and violation in a 3D view. This helps the BIM manager to

communicate the end result with the designers and supplier chain partners involved in the

project. Overall, this automated rule checking process reduces the time used in the rule

checking process. Visualizing the violations and mismatches (if any) in a 3D view, helps for

effective communication among the stakeholders in the project. To achieve this objective, a

methodology is formulated. By implementing that formulated method an automated rule

checker for in-house BIM norm can be developed.

8

9

Chapter-2

2 Glossary
Notations Abbreviations Definitions

AEC Architecture Engineering &
Construction

A phrase that may be used as
an alternative to describe the
building construction
industry.

API Application Programming
Interface

A platform to express
operations, inputs, outputs,
and underlying types, defining
functionalities that are
independent of their
respective implementations,
which allows definitions and
implementations to vary
without compromising the
interface.

BIM

Building Information
Modeling

An object‐oriented,
AEC‐specific model – a digital
representation of a building
to facilitate exchange and
interoperability of
information in digital format.
The model can be without
geometry or with 2D or 3D
representations. It is mainly
used to communicate among
stakeholders of that
construction project.

CORENET Construction and Real Estate
Network

An Automated Rule checking
system development in 1995
by Singapore’s Ministry of
National Development. This
facility offers three phase e-
Submission, e-PlanCheck and
e-Info.

CS Compressive Strength The compressive strength of
concrete is the most common
performance measure used
by engineers in designing
buildings.

10

Notations Abbreviations Definitions

GUID Global Unique Identifier It is a unique reference used
as an identifier.

HBO BIM norms

Hendriks Bouw en
Ontwikkeling

The HBO BIM Norm is derived
from the Dutch Rgd BIM
Norms (Rgd BIM Standard,
2013) with additional rules
and requirements specified by
the experts without violating
the original BIM Standards

IFC Industry Foundation Classes An international specification
for product data
exchange and sharing for
AEC/FM. IFC enables
interoperability between the
computer applications
for AEC/FM.

LBIW Load- Bearing Internal Wall A load-bearing wall is
a wall that bears the weight of
the structure and conducts its
weight to foundations of a
structure.

NLBIW Non-Load Bearing Internal
Walls

A wall that only capable of
supporting its own weight and
it can’t support an impose
load.

NL/SFB Netherlands/
Samarbestkommitte
Byggnadsfragor (collaborative
commite for construction
issues)

SfB coding was developed in
the fifties in Sweden for
classification of building parts
for the benefit of cost
estimates and performance
specifications. NL is a Dutch
SfB committee, which has
developed a classification
table for the Dutch
construction industry under
the name NL-SfB.

Python OCC OpenCasCade A 3D CAD development
framework for the Python
programming language. It
provides features such as
advanced topological and
geometrical operations, data

11

Notations Abbreviations Definitions

exchange (STEP).

OWL

Web Ontology Language

A Semantic Web language
designed to represent
complex knowledge about
things and relation between
group of things

RDF Resource Description
Framework

A data model for representing
information (especially
metadata) about resources in
the Web. RDF consists of
triple patterns Subject,
Predicate and Object.

RDFLIB Resource Description
Framework Library

A library used to work with
RDF in a Python package.

RGD/RVD Dutch BIM norms Rijksgebouwendienst Building
Information Model Standard

BIM norms provided by the
Dutch government as a
guideline to designers to
design the building models
according to the given set
rules and regulation.

SMC Solibri Model Checker A software tool to check and
validate IFC models

SPARQL Simple Protocol and RDF
Query Language

SPARQL is a semantic query
language for datasets in RDF
and use to retrieve and
manipulate data store in RDF
format

TTL Terse Triple Language An extension of turtle files has
a “.ttl” on all platforms. A
Turtle document allows
writing down an RDF graph in
a compact textual form

URI Uniform Resource Identifier A string of characters used to
identify a resource. Such
identification enables
interaction with
representations of the
resource over a network,
typically the World Wide
Web, using specific protocols.

W3C The World Wide Web An international community

12

Notations Abbreviations Definitions

Consortium and a standard organization
for World Wide Web. The
organization's purpose is to
develop an open standard so
that the Web evolves in a
single direction rather than
being splintered among
competing factions.

13

Chapter-3

3 Literature Review
In recent years the AEC industry became more complex due to larger number of stakeholders

involved in the same construction project. This increase in the number of stakeholders effects

the effective collaboration. According to (Charalambous, Thorpe, Yeomans, & Doughty, 2013)

“Effective collaboration requires coordinated communication and communicated

coordination”. Building Information Modeling (BIM) can be expressed as the language to

coordinate the communication in the construction industry. Collaboration not only means

exchange of data among the stakeholders but also checking and validating of those exchanged

data. To check and validate the data there are few automated rule checkers such as the Solibri

Model Checker (SMC) and Revit tools are available in the market. These tools are sometimes

isolated or differ from the current requirement. A strong coordination between these

requirement and tools is beneficial for a better collaboration. Semantic web technologies and

Linked Data approach can be helpful to achieve this aim (Costa & Pauwels, 2015).

In this chapter, current studies between BIM and Linked Data approach are discussed, in order

to show the development of BIM and Linked Data approach in the construction industry. Based

on these development, an automated rule checker is beneficial in rule checking is conducted in

the end.

3.1 Building Information Modeling (BIM) and Industry Foundation Classes (IFC)

Building Information Modeling (BIM) is an emerging technology in the AEC industry. BIM

technology helps to present the building design in three dimensional views and it is also known

as virtual building. This virtual building plays a major role in the process of simulations, testing,

refining and validation of building design (Christiansson et al., 2010). BIM technology not only

beneficial in virtual buildings and rule checking, it also gives an opportunities for the

stakeholders to control the important variables of the project such as cost and time

management (Azhar et al., 2008).

The Industry Foundation Classes (IFC) is a standard data model that supports the data exchange

of building information models. Its schema is developed in the EXPRESS modelling language

(Beetz et al., 2014). There are many modelling language available to describe the product and

their data, but EXPRESS is the most successful modelling language define in ISO 10303-11:1994.

The EXPRESS language consist of the elements that allows an unambiguous data definition and

is part of the Standard for the Exchange of Product data (STEP) standard to define how the

product data should be described and exchanged (Pauwels, et al., 2010).

There are lot of research and development effort ongoing in the field of Building Information,

Modelling (BIM), and every research has its own limitations. Since BIM is more technically

14

advanced it is difficult for the non-professional client to understand and particularly elderly

people are resisting to accept this technology even though it has benefits (Vries et al., 2012).

According to a survey conducted by (Yan & Damian, 2008) over 40% of the USA and 20% UK

construction companies are not interested to adopt BIM because they have to invest time and

human resources to train their employees in the Building Information Modelling field. The

percentage of adopting this technology is increasing day by day.

Although, the Industry Foundation Classes (IFC) is a central and standardized data model shared

among the different stakeholders in a project it has some limitations. The IFC file format is not

based on a mathematically rigid theory like OWL and lacks formal rigidness. The EXPRESS

modelling language has limitations in resources reuse and interoperability. Few developers

have knowledge on this modeling language so it reduces the development of affordable and

free tools (Beetz et al., 2009) .The details of domain information are not explicitly available in

the modelled data (Beetz et al., 2015). Information picking i.e. the stakeholder can’t pick

specific information from the IFC model they must receive the full size model (Fischer & Kam,

2002).

3.2 Linked Data and Semantic web

The name Linked Data itself defines its definition, linking of data from different sources.

Technically, Linked Data define as the data published on the World Wide Web in a machine-

readable format and its meaning is explicitly defined. Then it is linked to other external data

sets, and can be linked from external data sets (Christian et al., 2008). The principle of Linked

Data is first outlined by Tim Berners-Lee in 2006 (Berners-Lee et al., 2008). The Semantic Web

shares the data and reuse among companies and community boundaries (Campbell & MacNeill,

2010). The Semantic not only requires machine-readable language, but also in the machine

understandable format. The machine-readable format recommended by World Wide

Consortium (W3C) is Resource Description Framework (RDF) in February 1999 (W3C, 2014)3.

The concept of Resource Description Framework (RDF) is a data model for representing

information (especially metadata) about resources on the Web. Metadata gives the information

about other data. RDF data model makes a statement about the resource in the form of

subject,_predicate,_object expressions. These expressions are known as “triples” in RDF

terminology.To identify the resources, RDF uses Uniform Resource Identifiers (URIs) and URI

references (URIRefs) (Decker et al., 2000). The triple patterns are identified by the following

format:

- Subjects can be either URIs or Blank nodes

- Predicates are mostly URI

- Objects can be URIs, Blank nodes or literals.

3
 https://www.w3.org/TR/rdf-schema/

15

These triple patterns from different data can be linked together and form as RDF graphs

(Hitzler, 2011)

The exact meaning of an RDF graph in a general context depends on many factors, which

include conventions within a user community to interpret user-defined RDF classes and

properties in specific ways, comments in natural language, or links to other content bearing

documents. But the meaning is much more convey that these forms will not directly accessed

by the machine processing. This meaning may be used by human interpreters of the RDF

information, or by programmers writing software to perform various kinds of processing on

that RDF information. However, RDF statements also have a formal meaning which determines,

with mathematical precision, the conclusions (or entailments) that machines can draw from a

given RDF graph (W3C, 2004)4. To retrieve and manipulate data store in RDF format or graph

using Simple Protocol and RDF Query Language and it’s shortly known as SPARQL (Prudhomme

& Seabome, 2008). SPARQL is a semantic query language for database in RDF and it recommend

by World Wide Consortium (W3C) in 1998 (W3C, 2013)5.

SPARQL is a graph matching query language and a query consist of three parts. They are as

follows:

- Pattern match

- Solution modifiers

- Output

Pattern match consist of several operation to find the matching pattern in RDF graph such as

optional parts, union of patterns, nesting, filtering (or restricting) values of possible matchings,

and the possibility of choosing the data source to be matched by a pattern. Solution modifiers

use to modify the computed output values using projection, distinct, order, limit, and offset.

Output, based on the query the end result (output) differs, such as matching of patterns,

construction of new triples from these values, and descriptions of resources (Perez et al., 2006).

Since the Semantic Web technology getting popular, the need for this technology in many

applications to support the rule based inference engine for processing Semantic Web data in an

intelligent manner. Many rule languages are proposed to allow rule reuse and interoperations

(Ameen et al., 2015). Some the rule languages for Semantic Web are RuleML, Semantic Web

Rule Language (SWRL), Notation3 (N3), Jane rules and Rule Interchange Format (RIF) (Paschke &

Boley, 2009).

3.3 BIM, Linked Data and Semantic web

In the context of Semantic Web technology, ontologies are playing a vital role for publishing

and connecting structured data on the web as Linked Data. In the AEC industry, Building

Information Modelling (BIM) is being used as central place of building data to facilitate

4
 https://www.w3.org/TR/rdf-primer/

5
 https://www.w3.org/TR/sparql11-query/

16

exchange of data in digital format by all stakeholders across the project life cycle. In order to

make a bridge between the BIM, Semantic Web and Linked data, (Lee et al., 2016) suggest a

framework to achieve the above mentioned goal. They are as follows:

- Develop an ontology for publishing data using linked data principles

- Extract the information from the BIM model and generate or convert it into a machine-

readable format

- Convert the extracted BIM data into a RDF graph

- Use SPARQL query to retrieve or modified the output data.

Creating a link between different building data set, can be achieved by creating vocabularies

using Linked data approach. A Vocabulary is a set of classes and properties used to describe

specific types of things, or things in a given domain or industry, but for a specific usage.

Vocabularies are used RDF, RDF Schema (W3C, 2004)6and Web Ontology Language (OWL,

2012)7 that defines the main schema modeling constructs such as “owl:Class” or “rdf:Propetry”.

In Building data, such as a BIM, in a Linked data format, can be combined with other relevant

data sets. By doing so, the AEC industry can generate and extract additional valuable

information across different domains in the industry. As result, cross domain information gives

a clear view of buildings operations and also provides added value for the domain stakeholders

in the organization. This valuable information is used take decision support throughout the

project life cycle (Curry et al., 2012).

3.4 Rules and Regulation

Rules and Regulation are written by experts (humans) in that field in a natural language. These

rules and regulations are composed into a set of standards known as building standards. These

building standards differ from country to country based on local conditions and these rules are

often published by the public legal bodies in both national and international level (Hjelseth &

Nisbet, 2011). These building standards are mostly in the form of documents, forms, orders

and information data base.

The European Union suggests a series of 10 European Standards and providing a common

approach for the design of buildings and other civil engineering works and construction

products (EN Eurocodes, 2013)8 . In particular, Netherlands follows the European standards,

with additional rules and regulations were published as local building standards in Building

Decree 2012 (Bouwbesluit 2012). This decree contains the technical regulations for all type

structures in the Netherlands. These Dutch regulations are more concerned about the safety,

health, usability, energy efficiency and green environment. Note that the Building rules can

6
 https://www.w3.org/TR/rdf-primer/

7
 https://www.w3.org/2001/sw/wiki/OWL

8
 http://eurocodes.jrc.ec.europa.eu/

17

differ from one municipality to another (Building regulations, 2012)9. In particular, the

Netherlands proposed a BIM standard referred to as the Rijksvastgoeddienst Building

Information Model Standard, shortly referred to as RGD Dutch BIM norms (Rillaer et al., 2012).

This Rdg BIM norms provides guidelines to designers to design the building models according to

the given set rules and regulations.

Even though these building standards are published to regulate the building design, due to the

large number of the rules standards, checking and validating these rules manually is a complex

task. This complexity reduces the efficiency of the project life cycle.

3.5 Automated Rule Checking and Linked Data

Rules and Regulation plays a vital role in the AEC industry by controlling and monitoring a

construction project. These Rules and Regulations are written in natural language, converting

these rules and regulations without changing the gist into machine-readable codes to check the

design is part of the Automated Rule checking process. This automated process helps to

increase the efficiency of the project and allows rapid decision-making in that particular issue

(Park & Kim, 2015).To achieve this rule checking process (C. Eastman et al., 2009) suggest four

different phases. They are:

- Rule and Requirement interpretation in a logical structure;

- Building model preparation;

- Rule execution;

- Reporting the results.

An Automated rule checker is a software tool which does not make any change or alternation in

the original design but is can accesses the design to check and validate the object and attributes

in that design (C. Eastman et al., 2009). Eastman state that “Rule-based systems apply rules,

constraints or conditions to a proposed design, with results such as “pass”, “fail” or “warning”,

or ‘unknown’ for cases where the needed data is incomplete or missing”.

Automated Rule checking is not new concept. In 1995 Singapore’s Ministry of National

Development initiated the effort of automated code checking. The objective of “CORENET is to

re-engineer the business processes of the construction industry to achieve a quantum leap in

turnaround time, productivity and quality” .CORENET is standards for Construction and Real

Estate Network. This facility offers three phases of services namely: e-Submission, e-Plan-Check

and e-Info (Government of Singapore, 2016)10. CORENET is developed novaCITYNETS Pte. Ltd in

the own platform called FORNAX. By using FORNAX objects, a rule written in natural language

could be directly interpreted to programming language. FORNAX has a C++ object library to

obtain new data and generate extended views of IFC data. The results of this e-checking is

9
 http://www.answersforbusiness.nl/regulation/building-regulations

10
 https://www.corenet.gov.sg

18

delivered in the form of word or pdf and also in the graphical format (Eastman et al., 2009).

Since the FORNAX library which has been developed and maintained by a private company,

expanding and hard-coded checking routines are not transparent for the public. The rule

checking codes are highly confidential. Therefore it is called a black box method (Preidel et al.,

2015).

Solibri Model Checker (SMC) is a Java based model checker developed in the year 2000 by the

Finnish software development company known as Solibri Inc. SMC can read the IFC files and

check the models with its preset rule libraries. By using the rule libraries available in the SMC,

the user can check and validate the model based on the chosen rules from the rule library.

Since Solibri is a commercial tool, external development of new or custom rule sets is only

possible with a cooperation of the original SMC software developer (Preidel & Borrmann,

2015).

Jotne EDModelChecker is another model checker, based on the EXPRESS language. This

platform providing an object database and supports the open development of new rules in

EXPRESS language. The IFC schema is also written in EXPRESS language .Working knowledge of

the rule written EXPRESS is limited within a small group of people (Eastman, et al., 2009).

SMART-Code is developed by International Code Council (ICC). It formalized process of rule by

converting the rules written in natural language into computer readable format (codes)

(Nawari, 2012). Unfortunately due lack of funding the development of SMART-Code is stopped

in 2010. The underlying mark-up concept used by SMART-Codes has been developed further by

AEC3 Ltd (Hjelseth, 2012).

The above mentioned (FORNAX, SMC, EDM & SMART-Code) state of the art technologies still

have limitations in terms of interoperability (Tan et al., 2010). Moreover these technologies are

not transparent and such that any editing, modifications of existing rules, or addition of new

rules have to be done by editing the original code by a person with a sound knowledge in the

field of computer science. The state art of tools lacks the capability of performing logical

compliance checking. Such as contractual requirement, quality control and safety procedures

are not semantically represented in the BIM model (Kasim, Li, Rezgui, & Beach, 2013).

When it comes to Linked data, several authors like (Beetz et al 2009,Pauwels, et al., 2010) have

done lot of research and development over a decade to create a bridge between BIM and

Linked data, based on Semantic Web techonolgy. Especially, in the process of rule checking

linked data has the potential to play a vital role. Data from different domains described in RDF

format can be linked through semantic rules and the information from the BIM models

descibres in this format .This cross domain information gives an opportunity to link alternative

representations of building information to show potential interrelationship among diverse

sources of information in a building project. The main advantage of Linked Data and semantic

web technology is that the schema, instances, and the rules can be defined in a common frame

with the same language (Pauwels et al., 2015).

19

3.6 Conculsion
Even though an automated rule checker has lot of benefits, converting every rules and

regulations from natural language without changing its natural context into machine-readable

format is a complex task. From the above analysis, the IFC data model contains the whole

information about the project and converting these STEP-based instance models into a RDF file

can be achieved. Using Linked Data approach allows models information from different data

source to be linked together. By using the SPARQL query language we can retrieve or modify

the data. Based on the above literatures study a prototype of an automated rule checker can be

developed.

20

21

Chapter-4

4 Methodology
In this chapter the methodology to develop an automated rule checker is explained and

illustrated with work flow diagrams. Initially, the conceptual frame is illustrated, the rules and

requirements chosen to develop an automated rule checker are explained and the computer

programming and query language is briefed. Finally, the conceptual work flow is explained.

4.1 Research model

Covert data to
RDF

Select rules
from in-house

BIM norms

Formalize rules
into computer

readable format
Execute Query Visualization

Figure 4 Conceptual Frame Work

4.1.1 In-House Rules

To conduct the process of rule checking, rules were chosen from the Hendriks Bouw en

Ontwikeling (HBO) BIM Norms (HBO BIM Norm, 2016). In this HBO BIM Norm the additional

rules and requirements are mainly derived with the suppliers in order to obtain an efficient

workflow throughout the entire building process. These additional rules and requirements

specified by the experts without violating the Rgd BIM Standards (Rgd BIM Standard, 2013).

These rules were formulated as in-house standards to enhance the quality, workflow and to

maintain uniqueness in a project.

There are many rules and regulations in HBO BIM Norms. For this research topic

IfcWallStandardCase is chosen. HBO BIM norms suggest specifications for three types of

walls. They are as follows.

 External walls

 Load Bearing Internal Walls (LBIW) (Lime Stone)

 Non-Load Bearing Internal Walls (NLBIW)

The above mentioned walls have many sub-rules, since it is practically not possible to consider

all rules due to the time limitation in the context of this thesis. This graduation project focuses

only on the Lime Stone walls specifications. The rules are divided into two categories namely:

[1] Property rules and [2] Geometrical rules

22

4.1.1 (A) Property Rules

Property rule specify the attributes of the walls. The properties and the specification are

summarized in the table 2.

Clause Wall type Attributes Specification

NLSfb 22 Kalkzandsteen (LBIW)

Type: Elements

 E, IN, EV, I

NLSfb 22 Kalkzandsteen (LBIW) Compressive strength

Thickness

CS12, CS20, CS28, CS36,

CS44 (Element)

100, 120, 150, 175,

214, 250, 300

Table 2 Property Rules

Table 2, shows the attributes of the limestone walls. These attributes have different

combinations of specifications. In the actual design this specification mentioned as combination

of strings in the IfcLabel under IfcWallStandardCase schema as explicit information. For

example, these wall labels are sequenced in the actual design as shown below.

 Kalkzandsteen Element E214 CS20

These sets of rules are suggested by the supplier Xella. Xella is one of the leading building

materials manufacturers in The Netherlands. This company supplies building materials to

Hendriks Bouw en Ontwikeling, especially the prefabricated limestone walls. Xella offers five

different type of prefabricated wall materials namely: [1]Silka Element, [2] Silka Lijbolken, [3]

Massief Blokken, [4] Ytong Cellenbeton and [5] Ytong Multipor Platen. These products have

their own set of properties like: wall type, element, thickness and compressive strength. These

sets of properties are suggested as a combination of strings. To be specific, the property

combinations of Silka Element product were chosen for this rule checking process. For example,

in the Silka Element load bearing wall has a combination in the following order: “Kalkzandsteen

Element (wall type), E (Element), 100 (Thickness) and CS20 (Compressive strength)” is the

efficient combination. There are some combinations which are not efficient or allowed in the

actual design they are: “Kalkzandsteen Element E100 CS28”. This list of property combinations

has both “true” and “false” combinations. Initially, it was documented as an IFC file as shown in

figure 5. Later, it was converted into an Excel file as shown in Appendix-A

23

4.1.1(B) Geometrical Rules

A geometrical rule specifies the geometrical terms and conditions associated with that rule.

The geometrical rule specified for the limestone wall is taken into consideration. The rule is

shown in table 3

Clause Wall type Rules

NLSfb 22 LBIW (Lime stone only) Prevent walls longer than 12
meters

Table 3 Geometrical Rule

 “Prevent walls longer than 12 meters”

The above rule is stated because the fabricated limestone walls are lifted and placed using a

crane in the construction site. The crane has a range of 12 meters maximum .If a wall is longer

than 12 meters, the workers have to dismantle the crane which is time consuming and not

efficient. So the company wants to check the length of the limestone in the design phase. If the

violations were found in the design phase, the company can find an alternative solution in an

efficient way.

Figure 5 Xella Combinations in IFC file (screen shot)

4.1.2 Formalized the rules

The rules are initially written in a natural language. These rules are converted into computer

readable format using the Simple Protocol and RDF Query Language and it’s shortly known as

SPARQL. The formalized rules in SPARQL query are explained in chapter 5, sections 5.3.2 and

5.6.4.

24

4.1.3 Convert data to RDF

In the data sets, such IFC model and the supplier combination in Excel file is converted to an

RDF file format. The main purpose of converting data to RDF is to maintain the uniform data

format throughout the rule checking process. Initially, the IFC model which is STEP file format

will be converted into an IfcOWL format. IfcOWL (Beetz et al.., 2009) is an ontology that can be

published to synchronized with IFC specification IfcOWL is used to allow extension towards

structured data sets and link the data to made it present online using semantic web technology

(buildingSMART, 2016). The supplier combination Excel file is converted into an RDF file. The

process of converting the data into RDF file is explained in chapter 5.

4.1.4 Execution and Visualization

The rules are formalized using the SPARQL query language. Executing the rules (query) against

the IFC model gives an opportunity to check and validate the design. The result of this process

of rule checking can be visualized in the form of text, graphs, tables and 3D graphical view. To

achieve this, the Python programming language along with special libraries and modules are

adopted.

Python can be extended by importing additional libraries, such rdflib, IfcOpenShell and

PythonOCC. IfcOpenShell is an open source software library that helps users to work with

the IFC file format. In other words IfcOpenShell is basically used to edit or add new content to

an .ifc file (Krijnen, 2015)11.

4.2 Conceptual Frame work

The conceptual work flow diagram in (figure 3) shows the process to develop this automated

rule checker. Initially, the rules and requirements mentioned in section 4.1.1 are written in

natural language were collected from Hendriks Bouw en Ontwikeling. These rules were

formalized into computer readable format using SPARQL. The role of python program language

is more in the geometrical rule checking process. The geometrical representations in an IFC

schema are not explicit, so python scripts are used to calculate the dimensions of the walls. The

IFC model and supplier’s specifications in Excel files are converted into an RDF files. The SPARQL

query is executed to check the design. Finally, the violating walls were visualized in a three

dimensional view using Python libraries. The implementation of this process in explained in

chapter 5.

11

 http://ifcopenshell.org/index.html

25

Chapter-5

5 Implementation
In this Chapter, the implementation procedure to develop a prototype Automated Rule checker

is explained. Initially, a brief introduction is given about the programming and querying

language and also Integrated Development Environment (IDE) used in this process. As

mentioned before, the process of rule checking is divided into two categories namely: [1]

Property Rule Checking and, [2] Geometric Rule checking. Each rule checking process has

followed different implementation procedure to achieve the end results to find the mismatch

and violations based on the in-house rules in a BIM model. Both implementations are illustrated

using work flow diagrams. A step by step procedure of the programming part is explained using

separate work flow diagrams. The output of this automated rule checker illustrated using

screen shots .Finally, a discussion is made based the assumptions, limitations in this process

and few recommendations were given for future development.

5.1 Introduction
The main object of this graduation thesis is to develop an Automated Rule Checker for in-house

BIM norms. To achieve this objective, programming and querying languages used in the process

of rule checking are shown in table 4.

Programming/Querying
language

IDE Application

SPARQL TopBraid Composer Retrieve the data from RDF
file

Python JetBrainsPyCharm Community
Edition

Program to achieve the
geometrical rule checking
and visualization of results

Table 4 Programming and Querying languages

SPARQL is shorthand for Simple Protocol and RDF Query Language. SPARQL is a Semantic query

language for database in RDF and it recommended by World Wide Consortium (W3C) in 1998

(W3C, 2013). SPARQL is used to retrieve and manipulate data from an RDF file. In research

presented here, the SPARQL query was composed in TopBraid Composer because if there are

any bugs in the SPARQL query it will highlighted as warring in TopBraid Composer. This helps to

debug the query based on the given warnings.

Python is an object oriented high level computer programming language with dynamic

semantics, in this process Python version 27 is used for programming. In this project, Python is

used to process geometrical rule checking and also to visualize the results in three dimensional

views.

26

The Resource Description Framework (RDF) plays a vital role in this project. The IFC model in

which the company is interested to check the properties of the walls was converted using the

IFC to RDF converter. This, IFC-to-RDF converter is a configurable Java program with open API

(Pauwels et al., 2012). The IFC model which is in STEP file format is import to the converter

(Java, API) and exported as an RDF file format. The process of converting IFC to RDF creates an

opportunity to link alternative representations of building information to show potential

interrelationship among diverse sources of information in a building project.

The combinations of wall properties are suggested by the supplier in section 4.1.1 are listed in

an Excel file. Using Google Open Refine this Excel file is converted into an RDF file (Open Refine

, 2012). During this process of converting Excel to RDF, the Excel file is imported into Google

Open Refine. The base or instance URI and reference URI are created. The reference URI

(predicate) is associated with wall attributes (objects) as strings. Finally, the file was exported

in an RDF file format. By using these above mentioned programming and querying languages,

implementations process to develop a prototype automated rule checker is explained in this

chapter.

5.2 Implementation for Property Rule Checking

Xella wall
combination

(excel file)

Start End

IFC Model

Converted RDF file
(Using Google
open refine)

Converted RDF file

Import to TopBraid
Composer/IDE

Query using
SPARQL

Visualize the result
as text/3D view

Figure 6 Work flow diagram of Property Rule Check

The wall property combinations suggested by the supplier was documented in spread sheet as

shown in table 5 format.

Silka Elmenten Wall Elementen Thickness Compressive
Strength

Allowable

Standaardd
Dragend

Kalkzandsteen
Element

E 100 CS12 True

Standaardd
Dragend

Kalkzandsteen
Element

E 100 CS20 True

Standaardd
Dragend

Kalkzandsteen
Element

E 100 CS28 False

Table 5 Example of wall property combinations

Note: The above table 5 is an example from the original excel file, the full combination of the

wall property is available in Appendix-A.

27

This excel file combinations were converted into an RDF file using Google Open Refine. Figure 7

represent the wall combinations in table 5 in turtle format.

1. @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

2. @prefix owl: <http://www.w3.org/2002/07/owl#>.

3. @prefix inst: <http://www.hendriks.bouwoss.nl/instance#>.

4. @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

5. @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

6. @prefix foaf: <http://xmlns.com/foaf/0.1/>.

7. @prefixhdse:<http://www.hendriks.bouwoss.nl/vocabulary#>.

8.

9. inst:0 hdse:silkaElement "Standaard Dragend" ;

10. hdse:wall "Kalkzandsteen Element" ;

11. hdse:elementen "E" ;

12. hdse:thickness "100" ;

13. hdse:compressiveStrength "CS12" ;

14. hdse:allowable "True" .

15.

16. inst:1 hdse:silkaElement "Standaard Dragend" ;

17. hdse:wall "Kalkzandsteen Element" ;

18. hdse:elementen "E" ;

19. hdse:thickness "100" ;

20. hdse:compressiveStrength "CS20" ;

21. hdse:allowable "True" .

22.

23. inst:2 hdse:silkaElement "Standaard Dragend" ;

24. hdse:wall "Kalkzandsteen Element" ;

25. hdse:elementen "E" ;

26. hdse:thickness "100" ;

27. hdse:compressiveStrength "CS28" ;

28. hdse:allowable "False" .

The turtle format is a textual syntax in a compact and natural text form expressing data in

Resource Discretion Framework (RDF). In figure 7, a base URI or instance URI is created as

“http://www.hendriks.bouwoss.nl/vocabulary#” and a reference URI is created as

“http://www.hendriks.bouwoss.nl/instance#”. Prefixes are given to represent these

URI’s, namely “inst” (base URI) and “hdse” (URIref). Note these URI’s are created by myself.

Figure 7 Wall property combinations in RDF triple format

http://www.hendriks.bouwoss.nl/vocabulary
http://www.hendriks.bouwoss.nl/instance

28

The IFC model in which the company is interested to check the properties of the walls was

converted using the IFC to RDF converter. The two RDF files such as: [1] Excel to RDF and [2] IFC

to RDF files are imported and linked using TopBraid Composer.

The list of walls was retrieved from the IFC to RDF model and compared against the Excel to

RDF file using a SPARQL query. The detail of this SPARQL query is explained in section 5.3.2.

Initially, this query was executed using the TopBraid Composer. The output of this SPARQL

query is illustrated in-detail with a screen shot in section 5.4

Using the Python programming language the visualization is conducted. Technically, it could be

achieved by opening the IFC model using IfcOpenshell in the program. A Visualization in a three

dimensional views can be achieved by using python OpenCasCade (OCC). The output of this

property rule checking is illustrated in-detail with screen shots in section 5.4

5.3 Programming steps for Property Rule Check

Check mismatch
combinations of wall

labels
Yes

No

Start

Process
end

Import
Libraries/
modules

Importing
RDF files

Query result
using SPARQL

Show original
model

Show
mismatch

walls in Red

Figure 8 Programming sequence for Property Rule Checking

5.3.1 Import Libraries and Modules

Libraries and Modules Application

 Rdflib It is a Python library for working with RDF and
it helps to represent information as graphs.

IfcOpenShell Help to open the IFC file

OCC OCC is known as OpenCasCADe. It provides
features such as advanced topological and
geometrical operation,data exchange in
various file formats.

IfcOpenShell.geom Opens a new graphical display window and
shows the output this program in 3D view

Table 6 Libraries and Modules using in Property Rule Checking

29

5.3.2 SPARQL Query: Property Rule Check

The list of walls along with its GUID(s) is retrieved from IfcWallStandardCase in the

IfcOWL file. An IfcWallStandardCase defines a wall with constraints for the provision of

parameters and with constraints for the geometric representation (buildingSMART, 2010). In

particular, this property rule checking is specified to check the attribute of the walls. Attributes

of the walls are explicitly present in IfcLabel entity from the IfcWallStandardCase. An

IfcLabel defines as a label of a wall in a string which represents the human-interpretable

name and shall have a natural-language meaning.

1 SELECT ?wall ?value ?id

2 WHERE {

3 ?wall a ifcowl:IfcWallStandardCase .

4 ?wall ifcowl:objectType_IfcObject ?type .

5 ?type rdf:type ifcowl:IfcLabel .

6 ?type express:hasString ?value .

7 ?wall ifcowl:globalId_IfcRoot ?globale .

8 ?globale rdf:type ifcowl:IfcGloballyUniqueId.

9 ?globale express:hasString ?id .

10

11 MINUS

12 {?wall ifcowl:objectType_IfcObject ?type .

13 ?type rdf:type ifcowl:IfcLabel .

14 ?type express:hasString ?value .

15

16 ?xella hdse:wall ?w;

17 hdse:allowable "True";

18 hdse:silkaElement ?se;

19 hdse:thickness ?t;

20 hdse:compressiveStrength ?cs;

21 hdse:elementen ?e.

22

23 FILTER (contains(str(?value),?t))

24 FILTER (contains(str(?value), ?w))

25 FILTER (contains(str(?value),?e))

26 FILTER (contains(str(?value), ?cs))

27 }}

To find the mismatch wall property combinations, “MINUS” operation is used. This operation

first checks whether a string exists in both the files and remove the matching sets by comparing

Figure 9 SPARQL Query for Property rule check

30

the two files. In this case, an attribute of wall is expressed as string in the ifcOWL file. The

ifcOWL is compared against the Xella RDF file by applying “FILTER” condition. Filters are used to

restrict the solution .Finally, the mismatch wall attributes are shown as an output. The result of

this SPARQL query is illustrated in the section 5.4

5.3.3 Visualization: Property Rule Check

The SPARQL query shows in figure 9 the mismatching attributes of the walls along with its

GUID. A GUID is a unique reference identity of wall, by using IfcOpenshell the violated walls

were highlighted in red by assigning the RGB color triplets in Python OpenCasCade (OCC). This

visualization is present in a three dimension views in new graphical window.

The code of the above property rule checking can be seen in Appendix-B

5.4 Results of Property Rule Checking
The main objective of this property Rule Checking is to check the mismatch properties or

attributes of the walls in an IFC model against the supplier specifications. This property rule is

explained in Chapter 4, section 4.1.1 and these combinations were listed in Appendix-A. As

mentioned in section 5.2, the SPARQL query was initially executed in TopBraid Composer. The

result of this is shown in figure 10

Figure 10 Output of the SPARQL query for property rule check in TopBraid Composer

The above output shows two mismatching wall properties when a SPARQL query is executed in

TopBraid composer. These mismatching wall combinations are mentioned under the “Value”

column and the GUID is listed in the “Id” column. In that, the first combination: “Kalkzandsteen

Klimaatelement EK300 C44” is false or inefficient combination as per the suppliers wall

specification (Appendix-A). The second combination, “Kalkzandsteen Element E175 CS55” is

31

violated because there is no “CS55” in the wall specification list. It proves that, the above

SPARQL query can find both the inefficient or false combination and also find the combinations

which are not present in the supplier’s combination list.

To visualize the violating walls in three dimensional views this process of rule checking is

conducted using Python. This process is conducted by the steps described in section 5.3 and

Python code for this property rule checking is available in Appendix-B. The violated walls are

visualized in three dimensional views as shown in the figure 11

Figure 11 Violated wall Properties in 3D view

The above figure 11 shows the output of the Property Rule checking. In that, we can see that

the mismatching wall properties are highlighted in Red. In particular, the front wall has a wall

combination of “Kalkzandsteen Element E175 CS55” and the rear wall has a combination of

“Kalkzandsteen Kimaatelement EK300 C44”. The python code identifies both violations and

shows them in a 3D view.

In some case, the design contains different types of walls like brick walls, concrete walls and

special type walls, etc. The specifications provided by suppliers have combinations of limestone

walls (ideal input). Walls other than this combination could occur in the actual design, but they

would be tracked by the program and shown as a violation in the output. So it may cause

unnecessary confusion to the end user, to avoid this confusion the walls which are not

Limestone walls will be highlighted in Green as shown in the below figure 12

In figure 12 the outer walls of the house are Limestone (Kalkzandsteen) walls and the inner

partition walls are designed using the preset wall library available in Revit such as “Interior - 3

1/8" Partition (1-hr)”walls. Since there is no partition wall combination in the suppliers

32

specification, SPARQL would consider this as a violated wall .To avoid this, the walls which are

not Limestone (Kalkzandsteen) walls are shown in the output as green. Technically it could be

achieved, by giving an “If condition” in python during visualization as show in the below figure

13

Figure 12 Walls other than limestone walls as in green

1 if value.find("Kalkzandsteen")== -1:

2 clr = (0,1,0)

3 else:

4 clr = (1,0,0)

The listing in figure 13 says that, if the result or output of the SPARQL query has the string

“Kalkzandsteen” show in Red else show the result in Green. This help to avoid confusion and

the end user can able to spot the error more accurately. Note “clr” is color and numbers (0,1,0)

and (1,0,0) are represent red and green in RGB triplets. The Python script for property rule

checking is available in Appendix-B

Figure 13 Highlighting non-limestone walls in green using "If “condition

33

5.5 Implementation of Geometrical Rule Checking

IFC model
Import IFC model

using IfcOpenShell

Extract non-explicit
information

(wall dimension)

IFC model to RDF and
add the extracted
information to the

RDF graph

Query using SPARQL
Visualization in 3D

Figure 14 Work flow of Geometrical Rule Checking

Figure 14, illustrates the general work flow diagram to achieve the process of the Geometrical

Rule Checking. The rule adopted to conduct this process is explained in chapter 4, section 4.1

This geometrical rule checking process is concerned about the dimensions such as length,

thickness and height of the walls. The geometrical representations are not explicitly present in

an IFC schema. Python program (IfcOpenShell) is used to calculate (extract) the wall dimensions

from the IFC model. The procedure to extract this information is explained in section 5.6 with

the work flow diagram.

The extracted wall dimensions are added into an RDF graph to make the values as explicit

information. This RDF graph contains a base URI or instance, reference URIs and literals.

SPARQL query is use to retrieve the length, GUID and attribute of the walls form the RDF graph.

Since the company is interest to check the Limestone walls (Kalkzandsteen wall) which are

longer than 12 meters, the SPARQL query is resisted using Filter condition. This SPARQL query is

explained in the section 5.6.4

Finally, the violated walls along with the GUID(s) are collected and visualization was done by

using IfcOpenShell. By assigning the RGB color triplets in OCC, the violated walls were

highlighted in red. This visualization is present in a three dimension views in new graphical

window.

Note: The code of the above property rule checking can be seen in Appendix-C

34

5.6 Programming steps for Geometric Rule checking

Start

No

Yes

End

Import Libraries/
modules

Import IFC model
Collect the list of

walls form the
IFC model

Calculate the
wall dimensions

Create a RDF
graph

Query the result
using SPARQL
from the RDF

graph

Show violated
walls in Red

Show original
model

Check the
Kalkzandsteen walls

longer than 12 meters
Yes

Figure 15 Programming sequence for Geometrical rule checking

5.6.1 Import libraries and IFC model

As did in the property rule checking, libraries and modules must be imported into the IDE. They

are explained in the below table 7.

Libraries and modules Application

 Rdflib It is a Python library for working with RDF and
it helps to represent information as graphs.

IfcOpenShell Help to open the IFC file

OCC OCC is known as OpenCasCADe. It provides
features such as advanced topological and
geometrical operation,data exchange in
various file formats.

IfcOpenShell.geom Opens a new graphical display window and
show the output in 3D view.

Table 7 Libraries and modules used in Geometrical rule checking process

5.6.2 Calculating wall dimensions

This process of rule checking is concerned about the dimensions of walls, so the list of walls is

collected from the IFC model to calculate the wall dimensions. The dimensions of the walls are

calculated by using the Swept area and bounding box dimensions.

Swept area or swept surface geometry is defines a rectangle as the profile definition in

IfcRectangleProfileDef. An IfcRectangleProfileDef is defined within the local

coordinate system, where “XDim” defines the length measure for the length of the rectangle,

“YDim” defines the length measure for the width of the rectangle (buildingSMART, 2010)12. So

the length of the walls is assigned by using Swept Area.Xdim and width of the walls is assigned

using Swept Area.Ydim and the height of the walls is calculate using bounding box (see

Appendix-C).

A bounding box is defined as an expression of the maximum extents of a three-dimensional

object or set of objects within its 3-D (x, y, z) coordinate system, in other words min(x), max(x),

min(y), max(y) and min(z), max(z). In particular, for an IfcWall the bounding box is placed

12

 http://www.buildingsmart-
tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcwallstandardcase.htm

35

relative to the walls local placement and the dimensions have to be positive. The bounding box

is calculated using the max(x,y,z) – min(x,y,z) and the maximum value between X and Y is

assigned as length and minimum of X and Y is interpreted as thickness of the walls, the Z

coordinate will always be height of the walls.

5.6.3 Creating a RDF graph

Once the dimensions of the walls are extracted the values are added in an RDF graph. The RDF

contains a base URI or instance, reference URIs and literals. The URI’s are created by myself as

show in the below figure 16.

 1. wall = URIRef("http://www.exlla.nl/wall_")

 2.

 3. length = URIRef("http://www.hendriks.bou/length")

 4. height = URIRef("http://www.hendriks.bou/height")

 5. thick = URIRef("http://www.hendriks.bou/thickness")

 6. Gid = URIRef("http://www.hendriks.bou/Guid")

 7. name = URIRef("http://www.hendriks.bou/name")

 8.

 9. length = (Literal(l, datatype=XSD.float))

 10. thicknes = (Literal(t, datatype=XSD.float))

 11. height = (Literal(h, datatype=XSD.float))

 12. GuId = Literal(product.GlobalId)

 13. walltype = Literal(product.Name)

 14.

 15. g.add((wall, Gid, GuId))

 16. g.add((wall, leng, length))

 17. g.add((wall, thick, thicknes))

 18. g.add((wall, heigh, height))

 19. g.add((wall, name, walltype))

 20.

 21. g.serialize(format='turtle')

The literal are the values of wall dimensions such as length, thickness, height along with the

GUID and wall label. A RDF graph has subject, predicate and object; here the subject is a base

URI of wall instance, predicate is an URI reference to length, thickness, height and GUID, wall

label and each predicate has its own literals. Finally, the RDF graph is serialized in turtle format

as shown in the above figure 16.

Figure 16 RDF graph with wall dimensions

36

5.6.4 SPARQL query: Geometrical Rule checking

SPARQL query is used to retrieve the wall length from the list of walls with filtering condition to

restrict the result to find the walls longer than 12 meters. The RDF graph not only consists of

the length, thickness and height but also with the GUID and label of the wall. By using the

“FILTER” condition the result is resisted to check the Limestone walls (Kalkzandsteen wall)

which are longer than 12 meters. The query is composed as shown in the below figure 17.

1. SELECT DISTINCT ?length ?GuId

2. WHERE {

3. ?wall ns1:length ?length.

4. ?wall ns1:Guid ?GuId.

5. ?wall ns1:name ?type.

6.

7.FILTER(?length>12&&(contains(str(?type),"KALKZANDSTEEN")))

8. }

5.6.5 Visualization: Geometrical Rule checking

Visualization is achieved by using the query result, which shows the walls longer than 12 meters

along with its GUID. The GUID is a unique reference identity of wall, by using IfcOpenshell the

violating walls were traced and highlighted in red by assigning the RGB color triplets in Python

OpenCasCade (OCC). This visualization is present in a three dimension view in a new graphical

window. The output of this geometrical rules checking is explained using the screen shot in the

below section 5.7

Note: The code of the above geometrical rule checking can be seen in Appendix-C

Figure 17 Query to find the walls longer than 12 meters

37

5.7 Result of Geometrical Rule Checking

Initially a simple model was used to test the code; purposely the two outer walls are drafted

longer than 12 meters. The code checks every wall and shows the violated walls in Red as

shown in figure 18

Figure 18 Walls longer than 12 meters highlighted in red

Finally, a complex model is chosen to test this geometrical rule and this model was issued by

the Hendriks. Since the company is interested to test only for the Limestone walls

(Kalkzandsteen) the result were narrowed down using SPARQL query as mentioned in figure 16.

There is no limestone walls longer than 12 meters, in the IFC model. This shows that all

Limestone walls are below 12 meters, the output shows no violations see figure 20.

To double check the result the SPARQL is modified to check the limestone walls smaller than 12

meters as shown figure 19

1. SELECT DISTINCT ?length ?GuId

2. WHERE {

3. ?wall ns1:length ?length.

4. ?wall ns1:Guid ?GuId.

5. ?wall ns1:name ?type.

6.

7.FILTER(?length<12&&(contains(str(?type),"KALKZANDSTEEN")))

8. }

Figure 19 Query modified to check limestone walls smaller than 12

38

Figure 20 Geometrical rule checking conducted using complex model

Figure 21 Limestone walls smaller than 12 meters are shown in green

The figure 21 shows the limestone walls which are smaller than 12 meters in green.

39

5.8.1 Assumptions

In this geometrical rule check process, it was assumed that all walls are straight and rectangular

walls. The company is interested to check the length of the limestone walls. These limestone

walls are always straight and rectangular because these walls are prefabricated by the

suppliers.

5.8.2 Limitations

The use of axis-aligned bounding boxes to determine the dimensions of walls implies

limitations, since the rotation of a bounding box is no longer axis aligned. When the walls are

curved or aligned crossly the length and width of the walls are not accurate.

5.8.3 Recommendation

 Bounding box and swept area dimension are applicable only when the walls are straight

and rectangle. These geometrical repetitions are not fully accurate for all types of walls

in an IFC model. There different ways to calculate the dimensions of the walls, the wall

thickness can be obtained directly from the IfcMaterialLayer entity and the length

of the wall can be obtained by navigating into the wall axis shape representation entity

in both IfcWallStandardCase and IfcWall. The height of the walls can be

determined by using bounding box because bounding box take the maximum height of

the walls. In future if the company wants to check the wall dimensions for different

types of walls these IFC schema entities can be taken into account to determine the

dimensions of the wall.

 In property rule checking, the automated tool checks only the walls labels. For example,

if the thickness of a wall is stated as 300mm in the label but the actual geometry in the

design may be 250mm. Based on the wall label we cannot conclude that the

specifications is in line with the actual wall geometry . So this property rule can be

combined with the geometrical rule to check whether the actual geometry matches its

specifications.

 In the 3D visualization, the new graphical window shows only the violated walls in

different colors. For example, in geometrical rule checking the output figure 17 shows

the walls longer than 12 meters in red. But it doesn’t show how much the wall exceeds

beyond 12 meters in annotations in the graphical window. In future, IfcOpenShell can

focuses on adding annotations in the visualization helps end user to have clear about

the results.

40

 In the HBO BIM norms, there are many rules and requirements are stated for IFC objects

such as doors, windows, beams, columns, roofs, floors etc. Each IFC objects has its own

boundary conditions and property sets. Keep this research as a reference the properties

(supplier catalog) can be converted into a RDF file format. As mentioned before,

property (attribute) information of an IFC object is explicitly present in an IFC model.

Converting the IFC model into an IfcOWL gives an opportunity to compare the design

against the supplier specifications using the SPARQL query language. As result, the BIM

manager can find that the designer uses the correct or allowable specifications in the

actual design.

Geometry of an IFC object is not explicitly present in the IFC model. Using Python

programming language along with the IfcOpenShell (software library) the geometrical

information can be calculated. The calculated geometrical values can be added into an

RDF graph to make the information explicit. The rules can be formalized using SPARQL

query.

The results of this rule checking process can be visualized in three dimensional views

using python libraries and modules.

This gives an opportunity to convert maximum number of rules in the HBO BIM norm

into an automated rule checking process in the near future.

41

Chapter-6

6 Conclusion
In this chapter the overall conclusion is explained based on this rule checking process. Initially,

the answers to the research questions are briefed. Finally, the contribution of this prototype

automated rule checker to the society and industry is briefed.

6.1 Answer(s) to research questions

In this section, the sub-questions answers to the specific process of this development project

are being summarized. The main research question answers the overall process as summarized

at the end of this section.

Sub-Questions:

 What are the rules chosen for this automated rule checking process and why it is

stated in the in-house BIM norms?

In HBO BIM norms many rules and requirements were proposed for model captured the

in the IFC standard. This graduations project is focused on IfcWallStandardCase

rules and requirements. The rules are further categorized into [1] Property Rules and [2]

Geometrical Rules.

 A property of a wall defines the attribute of a wall such type, thickness and compressive

strength. Such property rules are used to capture, the lists of wall properties that are

suggested by the supplier. Since the suppler fabricates different types of walls, this

property rule set acts as a catalog. From this catalog the client (Hendriks) can choose a

particular type of wall based on their requirement. The designers must design the exact

specification chosen by the client. Based on the design specification the supplier

fabricates the walls and delivered to site.

A Geometrical rule defines constraints on the geometry or dimensions of the wall. In

this case, the rule states that the wall should not be longer than 12 meters because the

prefabricated walls are lifted using a crane in the site. This crane has the range of 12

meters, if the walls are designed and fabricated beyond 12 meters the workers have

dismantle the crane. This process is time consuming and inefficient in site.

 What data do we need to conduct this automated rule checking process?

To conduct this automated rule checking process, the rules written in natural language

and IFC models are collected from the company. Since this automated rule checker is

based on Linked Data approach, the data sets are converted into the Resource

Description Framework (RDF) format. The IFC model in which the rule checking process

was executed is converted into the IfcOWL format using a converter. The wall properties

are listed in an Excel file was converted into an RDF file using Google Open Refine.

42

 How is this automated rule checker beneficial for the BIM manager for decision

making?

Once this automated rule checker is developed the BIM manager can import models

into this rule checker. This rule checker is developed to check the wall properties and

dimensions. By executing the SPARQL query, along with Python program the mismatch

wall properties and violated wall length are visualized in a three dimensional view.

Visualizing the result helps the BIM manager and other stakeholders to take rapid-

decisions on those issues. This rule checker is more beneficial when the rule checking

process is conducted in the design phase of a building. This rule checking process helps

to avoid unnecessary problems during the execution phase of the building life cycle.

Overall, this automated rule checker reduces time consumption during the process of

rule checking.

Main Question:

 How to develop an Automated Rule checker for in-house BIM norms to check and

validate building models?

This question is the baseline of this whole thesis. To develop this automated rule

checker the project is divided into three major phases. They are: [1] Problem analysis,

[2] Methodology and [3] Implementation.

In the problem analysis phase, problems in the current rule checking process were

analyzed based on the expert interviews from the company.

During the Methodology phase, the solution for the problems that exist in the current

rule checking process is formulated based on literature studies. The methodology is

divided into five different processes. They are: [1] Select the rules form the in-house

BIM norms and collect the models, [2] Convert the rules written in natural languages

into computer readable format, [3] Convert data such as IFC model and suppler

requirement (Excel file) into RDF file format, [4] execute the SPARQL along with python

program and [5] visualize the result in three dimensional views.

Finally the implementation phase of rule checking is divided into two categories namely:

[1] Property rule checking and [2] Geometrical rule checking.

 In property rule checking, the supplier’s wall properties listed in an Excel file and the IFC

model are converted into RDF files. Using SPARQL query the mismatch wall properties

are identified. The result of this property rule checking is visualized in a three

dimensional view using Python libraries and modules.

In geometrical rule checking process, the geometrical information is not explicit in the

IFC schema. In this case, python program is used to calculate (extract) the wall

dimensions. The dimensions of the walls are added in an RDF graph to make the

43

information explicit. Using SPARQL query, the walls longer than 12 meters are identified.

The output of this geometrical checking is visualized in a three dimensional view using

Python libraries and modules.

6.2 Social Relevance
Due to globalization, clients around the world became more demanding and sophisticated

towards the requirements and services offered by the construction industry. This demanding

nature makes a huge pressure on the AEC industry to fulfill the clients expected services. The

constructions industry is in a position to adopt new smart solutions and services for better

coordination and communication among the stakeholders. An effective collaboration requires

coordinated communication and communicated coordination. In recent years, many smart

solutions and services were developed in the construction industry. One of the emerging

technologies is Building Information Modeling (BIM). BIM has many usages, such as clash

detection, visualization, construction planning and monitoring cost estimation of the

construction project.

This graduation project adds a small contribution to the constructions industry by developing a

prototype of an automated rule checker. This tool helps to check the properties and

geometrical conditions of a wall in the BIM model. If any violations are found during the rule

checking process, it will be highlighted in a 3D view. A visualization of the result helps the

effective communications and collaborations among the stakeholders. Based on the

visualization report, rapid decision making can be achieved. As a result, it will reduce the

analyzing cost and save time. This helps to avoid unnecessary delay in the project. Avoiding

delays increase profit for both the client and construction industry.

Investing into a commercial rule checking tools need high investment and high level of

programming knowledge is required to customize new rules. This automated rule checker is

developed based on a Linked Data approach, the process of querying and checking the building

models can be conducted without expensive and heavy technical or programming

requirements. The Semantic web technology and Linked Data approach give an opportunity to

link or compare cross domain information of the construction industry using a common data

format, know as RDF. However, to make profit out this automated rule checker based on Linked

data format the programs must also have the integrate capabilities that enable the interaction

with these types of information represented using the RDF data model.

This in-house automated rule checker can be shared among the stakeholders (open

environment) to check the models on their own. If any violations arise during the process of

rule checking, it can be rectified by designer himself. This leads to self repairing and reduce the

iteration process of rule checking among the stakeholders. On the business side, having our

own in-house rule checker gives a unique identity to the company in the construction market.

44

45

Bibliography

buildingSMART International . (2016, December 31). Home / Specifications / IFC Overview. Retrieved

January 15, 2016, from buildingSMART International : http://www.buildingsmart-

tech.org/specifications/ifc-overview

EN Eurocodes. (2013, July 1). Retrieved June 12, 2016, from The EN Eurocodes:

http://eurocodes.jrc.ec.europa.eu/

Health and Safety Authority. (2009). Clients in Construction: Best Practice Guidance. Dublin: Health and

Safety Authority.

Albino, V., Pontrandolfo, P., & Scozzi, B. (2002). Analysis of information flows to enhance the

coordination of production processes. Int. J. Production Economics , 7-19.

Ameen, A., Rahman Khan, K. U., & Rani, B. (2015). SemRPer - A Rule based Personalization System for

Semantic Web. International Journal Web Applications , 23-38.

Azhar, S., Nadeem, A., Mok, J. Y., & Leung, B. H. (2008). Building Information Modeling (BIM): A New

Paradigm for Visual Interactive Modeling and Simulation for Construction Projects. Auburn: Auburn

University, Auburn.

Bazjanac, V., & Crawley, D. B. (2000). THE IMPLEMENTATION OF INDUSTRY FOUNDATION CLASSES IN

SIMULATION TOOLS FOR THE BUILDING INDUSTRY. California : Lawrence Berkeley National Laboratory.

Beetz, J., Laat, R. d., Berlo, L. V., & Helm, P. v. (2010). Towards an Open Building Information Model

Server Report on the progress of an open IFC framework. Eindhoven: Eindhoven University of

Technology.

Berggren, C., Soderlund, J., & Anderson, C. (2001). Clients,Contractors, and Consultants: The

Consequence of Organizational Fragmentation in Contempaory Project Enviroment. Project

Management Journal , 39-48.

Berlo, L. v., Beetz, J., Bos, p., Hendriks, H., & Tongeren, v. R. (2013). Collaborative engineering with IFC:

new insights and technology. Delft: Netherlands organisation for Applied Scientific Research TNO.

bimserver.org. (2011, march 21). Home. Retrieved August 3, 2016, from bimserver.org:

http://bimserver.org/

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked Data - The Story So Far. International Journal on

Semantic Web and Information Systems , 53-72.

Building regulations. (2012). Building regulations. Retrieved June 12, 2016, from Answers for Business:

http://www.answersforbusiness.nl/regulation/building-regulations

buildingSMART. (2016, December 31). Home / Future / Linked Data / ifcOWL. Retrieved Janury 16, 2016,

from buildingSMART: http://www.buildingsmart-tech.org/future/linked-data/ifcowl

buildingSMART. (2010, September 5). Home:IfcWallStandardCase. Retrieved June 22, 2016, from

buildingSMART: http://www.buildingsmart-

tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcwallstandardcase.htm

46

Campbell, L. M., & MacNeill, S. (2010). The Semantic Web Linked and Open Data. UK: JISC CETIS.

Charalambous, G., Thorpe, T., Yeomans, S., & Doughty, N. (2013). COLLABORATIVE BIM IN THE CLOUD

AND THE COMMUNICATION TOOLS TO SUPPORT IT. China: Tsinghua University.

Christiansson, P., Svidt, K., Pedersen, K. B., & Dybro, U. (2010). USER PARTICIPATION IN THE BUILDING

PROCESS. Journal of Information Technology in Construction , 1874-4753.

Costa, G., & Pauwels, P. (2015). Building product suggestions for a BIM model based on rule sets and a

semantic reasoning engine. The Netherlands: Eindhoven.

Curry, E., Donnell, J. O., & Corry, E. (2012). Building Optimisation using Scenario Modeling and Linked

Data. NUI Galway.

Eastman, C., Lee, J. m., suk Jeong, Y., & kook Lee, J. (2009). Automatic rule-based checking of building

designs. Automation in Construction , 1011–1033.

Fischer, M., & Kam, C. (2002).). PM4D Final Report€, CIFE Technical Report. USA: Stanford University.

Government of Singapore. (2016). About Us. Retrieved Jane 12, 2016, from Corenet :

https://www.corenet.gov.sg

Hendriks Bouw en Ontwikkeling. (2016). HBO BIM Norm. Oss, The Netherlands : Hendriks.

Hitzler, P. (2011). Knowledge Representation for the Semantic Web. Dayton: Wright State University.

Hjelseth. (2012). Converting performance based regulations into computable rules in BIM based model

checking software. eWork and eBusiness in Architecture, Engineering and Construction , 461-469.

Hjelseth, E., & Nisbet, N. (2011). CAPTURING NORMATIVE CONSTRAINTS BY USE OF THE SEMANTIC

MARK-UP RASE METHODOLOGY. Norway: Department of Mathematical Sciences and Technology.

Jetbrains. (2016, December 31). Main . Retrieved June 20, 2016, from jetbrains:

https://www.jetbrains.com/pycharm/

Kasim, T., Li, H., Rezgui, Y., & Beach, T. (2013). AUTOMATED SUSTAINABILITY COMPLIANCE CHECKING

PROCESS: PROOF OF CONCEPT. 13th International Conference on Construction Applications of Virtual

Reality, (pp. 30-41). London.

Krijnen, T. (2015, October 7). Home. Retrieved January 15, 2016, from IfcOpenShell:

http://ifcopenshell.org/index.html

Lee, D. Y., Chi, H. l., Wang, J., Wang, X., & Park, C. S. (2016). A linked data system framework for sharing

construction defect information using ontologies and BIM environments. Automation in Construction ,

102–113.

Nash, S., Chinyio, E., Gameson, R., & Suresh, S. (2010). THE DYNAMISM OF STAKEHOLDERS’ POWER IN

CONSTRUCTION PROJECTS. Association of Researchers in Construction Management , 471-480.

Open Refine . (2012, October 2). Home. Retrieved June 20, 2016, from Open Refine :

http://openrefine.org/

47

OWL. (2012, December 11). Web Ontology Language (OWL). Retrieved May 25, 2016, from W3C:

https://www.w3.org/2001/sw/wiki/OWL

Park, S., & Kim, I. (2015). BIM-BASED QUALITY CONTROL FOR SAFETY ISSUES IN THE DESIGN AND

CONSTRUCTION PHASES. International Journal of Architectural Research , 111-129.

Paschke, A., & Boley, H. (2009). Rule Markup Languages and Semantic Web Rule Languages. IGI Global.

Pauwels, P. (2014). Supporting Decision-Making in the Building Life-Cycle Using Linked Building Data.

Buildings , 549-579.

Pauwels, P., & Oraskari, J. (2012, December 15). Retrieved January 17, 2016, from GitHUB:

https://github.com/mmlab/IFC-to-RDF-converter

Pauwels, P., & Zhang, S. (2015). Semantic Rule-checking for Regulation Compliance Checking: An

Overview of Strategies and Approaches. Proc. of the 32nd CIB W78 Conference (pp. 619-628). Eindhoven

The Netherlands: Ghent University.

Pauwels, P., Deursenc, D. V., Verstraeten, R., Roo, J. D., Meyer, R. D., Wallec, R. V., et al. (2010). A

semantic rule checking environment for building performance checking. Belgium: Ghent University.

Perez, J., Arenas, M., & Gutierrez, C. (2006). Semantics and Complexity of SPARQL. Chile: Universidad de

Talca.

Preidel, C., & Borrmann, A. (2015). Automated Code Compliance Checking Based on a Visual Language

and Building Information Modeling. München: Technische Universität München.

Python. (2016, January 12). Python: Doc. Retrieved June 1, 2016, from Python:

https://www.python.org/doc/essays/blurb/

Rillaer, D. V., Burger, J., Ploegmakers, R., & Mitossi, V. (2013). Rgd BIM Standard. The Hague, The

Netherlands: Rijksgebouwendienst.

Tan, X., & Hammad, A. (2010). Automated code compliance checking for building envelope design.

Journal of Computing in Civil Engineering , 203-211.

TopBraid Composer. (2016, December 31). About Us:. Retrieved June 20, 2016, from TopQuadrant:

http://www.topquadrant.com

VENUGOPAL, M., EASTMAN, C. M., & TEIZER, J. (2012). An Ontological Approach to Building Information

Model Exchanges in the Precast/Pre-stressed Concrete Industry. Construction Research Congress , 1114-

1123.

VOLK, R., STENGEL, J., & SCHULTMANN, F. (2014). Building Information Modeling (BIM) for existing

buildings – literature review and future needs. Automation in Construction , 109-127.

Vries, B. d., Allameh, E., & Heidari Jozam, M. (2012). Smart-BIM (Building Information Modeling).

Eindhoven: Eindhoven University of Technology.

W3C. (2012, November 7). Main Page . Retrieved March 14, 2016, from Semantic Web:

http://semanticweb.org/wiki/Main_Page.html

48

W3C. (2004, Feburary 10). RDF Primer. Retrieved June 15, 2016, from W3C.

W3C. (2014, February 25). RDF Schema 1.1. Retrieved March 12, 2016, from W3C RDF:

https://www.w3.org/TR/rdf-schema/

W3C. (2013, March 21). SPARQL 1.1 Query Language. Retrieved March 15, 2016, from W3C:

https://www.w3.org/TR/sparql11-query/

W3C. (2013, March 21). SPARQL 1.1 Query Language. Retrieved June 22, 2016, from W3C:

https://www.w3.org/TR/sparql11-query/#neg-notexists-minus

Yan, H., & Damian, P. (2008). Benefits and Barriers of Building Information Modelling. UK: Loughborough

University.

Zhang, C., Beetz, J., & Weise, M. (2014). INTEROPERABLE VALIDATION FOR IFC BUILDING MODELS USING

OPEN STANDARDS. Journal of Information Technology in Construction , 1874-4753.

49

Appendix- A
Silka Elmenten Wall

Elementen Thickness Compressive

Strength

Allowable

Standaard Dragend Kalkzandsteen Element E 100 CS12 True

Standaard Dragend Kalkzandsteen Element E 100 CS20 True

Standaard Dragend Kalkzandsteen Element E 100 CS28 False

Standaard Dragend Kalkzandsteen Element E 120 CS12 True

Standaard Dragend Kalkzandsteen Element E 120 CS20 True

Standaard Dragend Kalkzandsteen Element E 120 CS28 False

Standaard Dragend Kalkzandsteen Element E 150 CS12 True

Standaard Dragend Kalkzandsteen Element E 150 CS20 True

Standaard Dragend Kalkzandsteen Element E 150 CS28 True

Standaard Dragend Kalkzandsteen Element E 175 CS12 True

Standaard Dragend Kalkzandsteen Element E 175 CS20 True

Standaard Dragend Kalkzandsteen Element E 175 CS28 True

Standaard Dragend Kalkzandsteen Element E 175 CS36 True

Standaard Dragend Kalkzandsteen Element E 175 CS44 True

Standaard Dragend Kalkzandsteen Element E 214 CS12 True

Standaard Dragend Kalkzandsteen Element E 214 CS20 True

Standaard Dragend Kalkzandsteen Element E 214 CS28 True

Standaard Dragend Kalkzandsteen Element E 214 CS36 True

Standaard Dragend Kalkzandsteen Element E 214 CS44 True

Standaard Dragend Kalkzandsteen Element E 250 CS20 False

Standaard Dragend Kalkzandsteen Element E 250 CS28 False

Standaard Dragend Kalkzandsteen Element E 250 CS36 False

Standaard Dragend Kalkzandsteen Element E 300 CS12 True

Standaard Dragend Kalkzandsteen Element E 300 CS20 True

50

Silka Elmenten Wall

Elementen Thickness Compressive

Strength

Allowable

Standaard Dragend Kalkzandsteen Element E 300 CS28 True

Standaard Dragend Kalkzandsteen Element E 300 CS36 True

Standaard Dragend Kalkzandsteen Element E 300 CS44 True

Standaard Niet

Dragend

Kalkzandsteen Element E 100 CS12 True

Standaard Niet

Dragend

Kalkzandsteen Element E 100 CS20 False

Standaard Niet

Dragend

Kalkzandsteen Element E 100 CS28 False

Standaard Niet

Dragend

Kalkzandsteen Element E 120 CS12 True

Standaard Niet

Dragend

Kalkzandsteen Element E 120 CS20 False

Standaard Niet

Dragend

Kalkzandsteen Element E 120 CS28 False

Standaard Niet

Dragend

Kalkzandsteen Element E 150 CS12 True

Standaard Niet

Dragend

Kalkzandsteen Element E 150 CS20 False

Standaard Niet

Dragend

Kalkzandsteen Element E 150 CS28 False

Standaard Niet

Dragend

Kalkzandsteen Element E 175 CS12 True

Standaard Niet

Dragend

Kalkzandsteen Element E 175 CS20 False

Standaard Niet

Dragend

Kalkzandsteen Element E 175 CS28 False

Standaard Niet

Dragend

Kalkzandsteen Element E 175 CS36 False

Standaard Niet Kalkzandsteen Element E 175 CS44 False

51

Silka Elmenten Wall

Elementen Thickness Compressive

Strength

Allowable

Dragend

Standaard Niet

Dragend

Kalkzandsteen Element E 214 CS12 True

Standaard Niet

Dragend

Kalkzandsteen Element E 214 CS20 False

Standaard Niet

Dragend

Kalkzandsteen Element E 214 CS28 False

Standaard Niet

Dragend

Kalkzandsteen Element E 214 CS36 False

Standaard Niet

Dragend

Kalkzandsteen Element E 214 CS44 False

Standaard Niet

Dragend

Kalkzandsteen Element E 250 CS20 False

Standaard Niet

Dragend

Kalkzandsteen Element E 250 CS28 False

Standaard Niet

Dragend

Kalkzandsteen Element E 250 CS36 False

Standaard Niet

Dragend

Kalkzandsteen Element E 300 CS12 False

Standaard Niet

Dragend

Kalkzandsteen Element E 300 CS20 False

Standaard Niet

Dragend

Kalkzandsteen Element E 300 CS28 False

Standaard Niet

Dragend

Kalkzandsteen Element E 300 CS36 False

Standaard Niet

Dragend

Kalkzandsteen Element E 300 CS44 False

Massa+ Dragend Kalkzandsteen Element EM 100 CS12 False

Massa+ Dragend Kalkzandsteen Element EM 100 CS20 False

Massa+ Dragend Kalkzandsteen Element EM 100 CS28 False

52

Silka Elmenten Wall

Elementen Thickness Compressive

Strength

Allowable

Massa+ Dragend Kalkzandsteen Element EM 120 CS12 False

Massa+ Dragend Kalkzandsteen Element EM 120 CS20 False

Massa+ Dragend Kalkzandsteen Element EM 120 CS28 False

Massa+ Dragend Kalkzandsteen Element EM 150 CS12 False

Massa+ Dragend Kalkzandsteen Element EM 150 CS20 False

Massa+ Dragend Kalkzandsteen Element EM 150 CS28 False

Massa+ Dragend Kalkzandsteen Element EM 175 CS12 False

Massa+ Dragend Kalkzandsteen Element EM 175 CS20 True

Massa+ Dragend Kalkzandsteen Element EM 175 CS28 True

Massa+ Dragend Kalkzandsteen Element EM 175 CS36 True

Massa+ Dragend Kalkzandsteen Element EM 175 CS44 False

Massa+ Dragend Kalkzandsteen Element EM 214 CS12 False

Massa+ Dragend Kalkzandsteen Element EM 214 CS20 False

Massa+ Dragend Kalkzandsteen Element EM 214 CS28 False

Massa+ Dragend Kalkzandsteen Element EM 214 CS36 False

Massa+ Dragend Kalkzandsteen Element EM 214 CS44 False

Massa+ Dragend Kalkzandsteen Element EM 250 CS20 True

Massa+ Dragend Kalkzandsteen Element EM 250 CS28 True

Massa+ Dragend Kalkzandsteen Element EM 250 CS36 True

Massa+ Dragend Kalkzandsteen Element EM 300 CS12 False

Massa+ Dragend Kalkzandsteen Element EM 300 CS20 True

Massa+ Dragend Kalkzandsteen Element EM 300 CS28 True

Massa+ Dragend Kalkzandsteen Element EM 300 CS36 True

Massa+ Dragend Kalkzandsteen Element EM 300 CS44 False

Velling Dragend Kalkzandsteen

Vellingelement

EV 100 CS12 False

53

Silka Elmenten Wall

Elementen Thickness Compressive

Strength

Allowable

Velling Dragend Kalkzandsteen

Vellingelement

EV 100 CS20 False

Velling Dragend Kalkzandsteen

Vellingelement

EV 100 CS28 False

Velling Dragend Kalkzandsteen

Vellingelement

EV 120 CS12 False

Velling Dragend Kalkzandsteen

Vellingelement

EV 120 CS20 False

Velling Dragend Kalkzandsteen

Vellingelement

EV 120 CS28 False

Velling Dragend Kalkzandsteen

Vellingelement

EV 150 CS12 True

Velling Dragend Kalkzandsteen

Vellingelement

EV 150 CS20 True

Velling Dragend Kalkzandsteen

Vellingelement

EV 150 CS28 False

Velling Dragend Kalkzandsteen

Vellingelement

EV 175 CS12 False

Velling Dragend Kalkzandsteen

Vellingelement

EV 175 CS20 False

Velling Dragend Kalkzandsteen

Vellingelement

EV 175 CS28 False

Velling Dragend Kalkzandsteen

Vellingelement

EV 175 CS36 False

Velling Dragend Kalkzandsteen

Vellingelement

EV 175 CS44 False

Velling Dragend Kalkzandsteen

Vellingelement

EV 214 CS12 True

Velling Dragend Kalkzandsteen

Vellingelement

EV 214 CS20 True

Velling Dragend Kalkzandsteen EV 214 CS28 False

54

Silka Elmenten Wall

Elementen Thickness Compressive

Strength

Allowable

Vellingelement

Velling Dragend Kalkzandsteen

Vellingelement

EV 214 CS36 False

Velling Dragend Kalkzandsteen

Vellingelement

EV 214 CS44 False

Velling Dragend Kalkzandsteen

Vellingelement

EV 250 CS20 False

Velling Dragend Kalkzandsteen

Vellingelement

EV 250 CS28 False

Velling Dragend Kalkzandsteen

Vellingelement

EV 250 CS36 False

Velling Dragend Kalkzandsteen

Vellingelement

EV 300 CS12 True

Velling Dragend Kalkzandsteen

Vellingelement

EV 300 CS20 True

Velling Dragend Kalkzandsteen

Vellingelement

EV 300 CS28 False

Velling Dragend Kalkzandsteen

Vellingelement

EV 300 CS36 False

Velling Dragend Kalkzandsteen

Vellingelement

EV 300 CS44 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 100 CS12 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 100 CS20 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 100 CS28 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 120 CS12 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 120 CS20 False

55

Silka Elmenten Wall

Elementen Thickness Compressive

Strength

Allowable

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 120 CS28 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 150 CS12 True

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 150 CS20 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 150 CS28 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 175 CS12 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 175 CS20 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 175 CS28 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 175 CS36 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 175 CS44 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 214 CS12 True

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 214 CS20 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 214 CS28 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 214 CS36 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 214 CS44 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 250 CS20 False

Velling Niet Dragend Kalkzandsteen EV 250 CS28 False

56

Silka Elmenten Wall

Elementen Thickness Compressive

Strength

Allowable

Vellingelement

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 250 CS36 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 300 CS12 True

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 300 CS20 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 300 CS28 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 300 CS36 False

Velling Niet Dragend Kalkzandsteen

Vellingelement

EV 300 CS44 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 100 CS12 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 100 CS20 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 100 CS28 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 120 CS12 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 120 CS20 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 120 CS28 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 150 CS12 True

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 150 CS20 True

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 150 CS28 False

57

Silka Elmenten Wall

Elementen Thickness Compressive

Strength

Allowable

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 175 CS12 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 175 CS20 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 175 CS28 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 175 CS36 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 175 CS44 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 214 CS12 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 214 CS20 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 214 CS28 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 214 CS36 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 214 CS44 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 250 CS20 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 250 CS28 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 250 CS36 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 300 CS12 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 300 CS20 False

Klimaatwand Dragen Kalkzandsteen EK 300 CS28 False

58

Silka Elmenten Wall

Elementen Thickness Compressive

Strength

Allowable

Klimaatelement

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 300 CS36 False

Klimaatwand Dragen Kalkzandsteen

Klimaatelement

EK 300 CS44 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 100 CS12 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 100 CS20 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 100 CS28 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 120 CS12 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 120 CS20 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 120 CS28 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 150 CS12 True

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 150 CS20 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 150 CS28 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 175 CS12 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 175 CS20 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 175 CS28 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 175 CS36 False

59

Silka Elmenten Wall

Elementen Thickness Compressive

Strength

Allowable

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 175 CS44 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 214 CS12 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 214 CS20 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 214 CS28 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 214 CS36 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 214 CS44 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 250 CS20 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 250 CS28 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 250 CS36 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 300 CS12 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 300 CS20 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 300 CS28 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 300 CS36 False

Klimaatwand Niet

Dragen

Kalkzandsteen

Klimaatelement

EK 300 CS44 False

60

61

Appendix-B
import rdflib

import OCC.gp

import OCC.Geom

import OCC.Bnd

import OCC.BRepBndLib

import OCC.BRep

import OCC.BRepPrimAPI

import OCC.BRepAlgoAPI

import OCC.BRepBuilderAPI

import OCC.GProp

import OCC.BRepGProp

import OCC.TopoDS

import OCC.TopExp

import OCC.TopAbs

import ifcopenshell

import ifcopenshell.geom

from rdflib import URIRef, BNode, Literal,Graph,XSD

from rdflib import Namespace

from rdflib.namespace import RDF, FOAF

g = rdflib.Graph()

g.parse("silkaele.ttl",format="n3")

g.parse("SilkaElement.ttl",format="n3")

qres = g.query(

 """SELECT ?wall ?value ?id

WHERE {

?wall a ifcowl:IfcWallStandardCase .

?wall ifcowl:objectType_IfcObject ?type .

?type rdf:type ifcowl:IfcLabel .

?type express:hasString ?value .

?wall ifcowl:globalId_IfcRoot ?globale .

?globale rdf:type ifcowl:IfcGloballyUniqueId.

?globale express:hasString ?id .

MINUS

{?wall ifcowl:objectType_IfcObject ?type .

?type rdf:type ifcowl:IfcLabel .

?type express:hasString ?value .

?xella hdse:wall ?w.

?xella hdse:allowable "True".

?xella hdse:silkaElement ?se.

?xella hdse:thickness ?t.

?xella hdse:compressiveStrength ?cs.

?xella hdse:elementen ?e.

FILTER (contains(str(?value),?t))

FILTER (contains(str(?value), ?w))

FILTER (contains(str(?value),?e))

FILTER (contains(str(?value), ?cs))

 } }""")

62

for i in qres:

 print i

tem =qres

tem1 = list()

tem2 = list()

results = list()

for i in tem:

 tem1.append(str(i))

for i in tem1:

 tem2.extend(i.split("'"))

k = 3

while k < len(tem2):

 print (tem2[k], tem2[k + 2])

 results.append(tem2[k])

 results.append(tem2[k + 2])

 k = k + 7

Specify to return pythonOCC shapes from ifcopenshell.geom.create_shape()

settings = ifcopenshell.geom.settings()

settings.set(settings.USE_PYTHON_OPENCASCADE, True)

Initialize a graphical display window

occ_display = ifcopenshell.geom.utils.initialize_display()

Hendriks = ifcopenshell.open(r"SilkaElementen.ifc")

products = Hendriks.by_type("IfcProduct")

guid_to_color = {}

index = 1

while index < len(results):

 guid = results[index]

 value = str(results[index - 1])

 clr = (1,1,1)

 if value .find("Kalkzandsteen")== -1:
 clr = (1,0,0)

 else:

 clr = (1,0,0)

 clr = OCC.Quantity.Quantity_Color(clr[0], clr[1], clr[2],

OCC.Quantity.Quantity_TOC_RGB)

 guid_to_color[guid] = clr

 index = index + 2

for product in products:

 if product.Representation:

 shape = ifcopenshell.geom.create_shape(settings, product).geometry

 clr = guid_to_color.get(product.GlobalId)

63

 display_shape = ifcopenshell.geom.utils.display_shape(shape, clr)

 if not clr:

 ifcopenshell.geom.utils.set_shape_transparency(display_shape, 0.8)

occ_display.FitAll()

ifcopenshell.geom.utils.main_loop()

64

65

Appendix-C
import OCC.gp

import OCC.Geom

import OCC.Bnd

import OCC.BRepBndLib

import OCC.BRep

import OCC.BRepPrimAPI

import OCC.BRepAlgoAPI

import OCC.BRepBuilderAPI

import OCC.GProp

import OCC.BRepGProp

import OCC.V3d

import OCC.Quantity

import OCC.BRepTools

import OCC.Display.SimpleGui

import OCC.TopoDS

import OCC.TopExp

import OCC.TopAbs

import ifcopenshell

import ifcopenshell.geom

from rdflib import URIRef, BNode, Literal,Graph,XSD

from rdflib import Namespace

from rdflib.namespace import RDF, FOAF

import math

Specify to return pythonOCC shapes from ifcopenshell.geom.create_shape()

settings = ifcopenshell.geom.settings()

settings.set(settings.USE_PYTHON_OPENCASCADE, True)

Initialize a graphical display window

occ_display = ifcopenshell.geom.utils.initialize_display()

Open the IFC file using IfcOpenShell

ifc_file = ifcopenshell.open(r"house.ifc")

Display the geometrical contents of the file using Python OpenCascade

products = ifc_file.by_type("IfcWall")

j=0

g = Graph()

for product in products:

 v=1

 try:

 l= product.Representation.Representations[v-1].Items[0].SweptArea.XDim

 t= product.Representation.Representations[v-1].Items[0].SweptArea.YDim

 shape = ifcopenshell.geom.create_shape(settings, product).geometry

 bbox = OCC.Bnd.Bnd_Box()

 OCC.BRepBndLib.brepbndlib_Add(shape, bbox)

 x1, y1, z1, x2, y2, z2 = bbox.Get()

 h = '{0:.5f}'.format(z2 - z1)

66

 except AttributeError:

 shape = ifcopenshell.geom.create_shape(settings, product).geometry

 display_shape = ifcopenshell.geom.utils.display_shape(shape)

 bbox = OCC.Bnd.Bnd_Box()

 OCC.BRepBndLib.brepbndlib_Add(shape, bbox)

 x1, y1, z1, x2, y2, z2 = bbox.Get()

 x = x2 - x1

 y = y2 - y1

 h = z2 - z1

 l = '{0:.5f}'.format(max(x, y))

 t = '{0:.5f}'.format(min(x, y))

 h = '{0:.5f}'.format(z2 - z1)

 wall = URIRef("http://www.exlla.nl/wall_" + str(j))

 leng = URIRef("http://www.hendriks.bou/length")

 heigh = URIRef("http://www.hendriks.bou/height")

 thick = URIRef("http://www.hendriks.bou/thickness")

 Gid = URIRef("http://www.hendriks.bou/Guid")

 name = URIRef("http://www.hendriks.bou/name")

 length = (Literal(l, datatype=XSD.float))

 thicknes = (Literal(t, datatype=XSD.float))

 height = (Literal(h, datatype=XSD.float))

 GuId = Literal(product.GlobalId)

 walltype = Literal(product.Name)

 # creating rdf graph

 ifcwall = g.bind('wall', 'http://www.exlla.nl/')

 g.add((wall, Gid, GuId))

 g.add((wall, leng, length))

 g.add((wall, thick, thicknes))

 g.add((wall, heigh, height))

 g.add((wall, name, walltype))

 j = j + 1

g.serialize(format='turtle')

#query the rdf graph using SPARQL

qres = g.query(

 """SELECT DISTINCT ?length ?GuId

 WHERE {

 ?wall ns1:length ?length.

 ?wall ns1:Guid ?GuId.

 ?wall ns1:name ?type.

 FILTER(?length > 12 && (contains(str(?type),"KALKZANDSTEEN")))

 }""")

tem =qres

tem1 = list()

tem2 = list()

results = list()

67

for i in tem:

 tem1.append(str(i))

for i in tem1:

 tem2.extend(i.split("'"))

k = 1

while k < len(tem2):

 print (tem2[k], tem2[k + 4])

 results.append(tem2[k])

 results.append(tem2[k + 4])

 k = k + 7

guid_to_color = {}

index = 1

while index < len(results):

 guid = results[index]

 value = float(results[index - 1])

 clr = (1,1,1)

 if value:

 clr = (1,0,0)

 clr = OCC.Quantity.Quantity_Color(clr[0], clr[1], clr[2],

OCC.Quantity.Quantity_TOC_RGB)

 guid_to_color[guid] = clr

 index = index + 2

for product in products:

 if product.Representation:

 shape = ifcopenshell.geom.create_shape(settings, product).geometry

 clr = guid_to_color.get(product.GlobalId)

 display_shape = ifcopenshell.geom.utils.display_shape(shape, clr)

 if not clr:

 ifcopenshell.geom.utils.set_shape_transparency(display_shape, 0.8)

occ_display.FitAll()

ifcopenshell.geom.utils.main_loop()

